Hello, my partner! Let's explore the mining machine together!

[email protected]

coal mill 180

coal mill, gypsum mill, clay mill, etc. | pfeiffer mps mills

coal mill, gypsum mill, clay mill, etc. | pfeiffer mps mills

Highest flexibility with constant product quality, individually conceived, suitable for a variety of applications, undergoing constant development: with a number of more than 2800 mills sold, the MPS vertical mill is our proven allrounder. It can be used for the grinding of coal, petcoke, clay, limestone, quicklime and many other materials no matter how different their grindability and abrasiveness may be or whatever fineness or drying degree is required. The MPS mill also grinds, dries, calcines, and classifies gypsum without any problem, all in a single machine, for any fineness requested and considering individual requirements. The MPS vertical roller mill - built to last, reliable and energy-efficient - is the optimum solution when it comes to performing several process steps in one unit.

High drying capacity, short dwell time of the material to be ground, and remote control of grinding pressure and classifier rotor speed ensure a fully automatic operation of the MPS mill even with varying raw material characteristics.

Three stationary grinding rollers roll on a rotating grinding table. The material is drawn in between the rollers and grinding table and ground by pressure and shear. The required pressure forces are produced by a hydropneumatic tension system. After being rolled over by the rollers, the material is conveyed to a stationary nozzle ring due to the rotation of the grinding table. Gases (air or hot gas) flow through this nozzle ring, take up the ground and dried material and convey it to the classifier where it is separated by the rotating wheel (rotor) into grits and fines. The grits fall back into the grinding zone whereas the fines leave the classifier with the gas flow for being separated in cyclones or a filter.

Three stationary grinding rollers roll on a rotating grinding table. The material is drawn in between the rollers and grinding table and ground by pressure and shear. The required pressure forces are produced by a hydropneumatic tension system. After being rolled over by the rollers, the material is conveyed to a stationary nozzle ring due to the rotation of the grinding table. Gases (air or hot gas) flow through this nozzle ring, take up the ground and dried material and convey it to the classifier where it is separated by the rotating wheel (rotor) into grits and fines. The grits fall back into the grinding zone whereas the fines leave the classifier with the gas flow for being separated in cyclones or a filter.

Three stationary grinding rollers roll on a rotating grinding table. The material is drawn in between the rollers and grinding table and ground by pressure and shear. The required pressure forces are produced by a hydropneumatic tension system. After being rolled over by the rollers, the material is conveyed to a stationary nozzle ring due to the rotation of the grinding table. Gases (air or hot gas) flow through this nozzle ring, take up the ground and dried material and convey it to the classifier where it is separated by the rotating wheel (rotor) into grits and fines. The grits fall back into the grinding zone whereas the fines leave the classifier with the gas flow for being separated in cyclones or a filter.

Three stationary grinding rollers roll on a rotating grinding table. The material is drawn in between the rollers and grinding table and ground by pressure and shear. The required pressure forces are produced by a hydropneumatic tension system. After being rolled over by the rollers, the material is conveyed to a stationary nozzle ring due to the rotation of the grinding table. Gases (air or hot gas) flow through this nozzle ring, take up the ground and dried material and convey it to the classifier where it is separated by the rotating wheel (rotor) into grits and fines. The grits fall back into the grinding zone whereas the fines leave the classifier with the gas flow for being separated in cyclones or a filter.

Three stationary grinding rollers roll on a rotating grinding table. The material is drawn in between the rollers and grinding table and ground by pressure and shear. The required pressure forces are produced by a hydropneumatic tension system. After being rolled over by the rollers, the material is conveyed to a stationary nozzle ring due to the rotation of the grinding table. Gases (air or hot gas) flow through this nozzle ring, take up the ground and dried material and convey it to the classifier where it is separated by the rotating wheel (rotor) into grits and fines. The grits fall back into the grinding zone whereas the fines leave the classifier with the gas flow for being separated in cyclones or a filter.

Three stationary grinding rollers roll on a rotating grinding table. The material is drawn in between the rollers and grinding table and ground by pressure and shear. The required pressure forces are produced by a hydropneumatic tension system. After being rolled over by the rollers, the material is conveyed to a stationary nozzle ring due to the rotation of the grinding table. Gases (air or hot gas) flow through this nozzle ring, take up the ground and dried material and convey it to the classifier where it is separated by the rotating wheel (rotor) into grits and fines. The grits fall back into the grinding zone whereas the fines leave the classifier with the gas flow for being separated in cyclones or a filter.

Depending on the abrasiveness of the material to be ground and areas to be protected, different wear materials are used on our vertical roller mills. The grinding elements are primarily made of alloy cast iron as per DIN 1695, hardfaced cast iron or composite materials with high-chromium inserts in ductile base materials. The housings and other mill components are protected against jet wear with highly wear-resistant steel plates or hardfaced composite plates. Components which are specifically exposed to wear like gas outletducts have additional ceramic liners. All this is for optimum protection and short maintenance shutdown.

The highest wear occurs on the wear parts of the grinding elements as is the case with any type of vertical mill. Therefore, ease of replacement and regeneration is a major feature of the mill. With our proven Lift-and-Swing System, wear parts can be replaced rapidly through one single maintenance door. The grinding rollers and grinding table segments are driven to the maintenance door with the maintenance drive and are swung out of the grinding area. As a result maintenance downtime is reduced and work is easy and safe.

coal mill - an overview | sciencedirect topics

coal mill - an overview | sciencedirect topics

To control the quality of coal being sent to the burners located on the furnace walls. The word quality here means the temperature and fineness of the PF. The set temperature values are dependent on the percentage of volatile matter that exists in the main fuel. The controlled temperature is important for many reasons such as stability of ignition, better grindability of solid fuels, better floating ability of suspended PF particles, etc. However, a temperature more than 65 to 70 is not recommended for various reasons.

Operating data from a coal mill is used to compare the fault detection observer-based method and PCA/PLS models based approach. There are 13 process measurements available representing different temperature, mass flows, pressures, speed etc in the coal mill.

The measurement is not updated, if the variation is less than 1%. The variations of T(t) is in the major part of the operational time inside this interval. Therefore, it is not suitable to be chosen as the predictor variable. However, the variations can be extracted from the TPA(t), which is used to control the temperature of the mill. Therefore, the PLS model is developed with the temperature of the mill as the dependent variable. In addition 6 of the other variables are chosen as regressors since there is barely information in the remainder.

A static PCA model is first developed, which captures around 99% of variations with 5 PCs (see Fig.5), which indicates strong collinearity among regressors. As shown in Fig.6, both Q and T2 statistics (with 95% confidence level) of the static PCA model are noisy, which potentially lead to false alarms. A static PLS model with 2 LVs achieves the minimal PRESS (see Fig.7), which is applied to the test dataset. Fig.8 shows the comparison between process measurement and the static PLS model prediction, together with the 95% confidence level. The process gradually drifts away form the NOC model, which eventually moves beyond the threshold around the sample 150. Due to the noise involved in the prediction signal, the estimation moves in and out the threshold from 110 till 200, when it is clearly out of the confidence level. Both Figs.6 and 8 reveal that static PCA and PLS models may lead to false alarms due to the noisy estimation. In addition, process measurements are commonly auto-correlated, this behavior is expected since the coal mill runs dynamical. Thus, dynamic models are developed by including time lagged process measurements, to address the issue of auto-correlations and reduce the possibility of false alarms due the none modeled dynamics.

Including time lagged terms enhance the NOC model by including historical data. However, time lagged terms also introduce additional noise into the modeling data block. For example, including n+1 time lagged terms might lead to poorer validation performance than the model with n terms due to measurement noise. Therefore, PRESS is used to choose an appropriate number of time lagged terms for a dynamic PLS model.

The predictive ability of the PLS model is improved with the inclusion of time lagged terms. The PRESS decreases from 1.645 to the minimal value of 1.142, which is obtained with a dynamic PLS of 3 LVs using 8 time lagged terms. The application of the dynamic PLS model to the test data reveals that the fault occurs in the process around sample 160. Fig.9 also shows a much smoother prediction such that the possibility of false alarms is significantly reduced. A dynamic PCA model is developed by the inclusion of 8 time lagged terms. The number of PCs is chosen as 2 through cross-validation, which explains 70.6% of process variations. The Q statistic of the dynamic PCA model is shown in Fig.10, the fault is detected around 160 samples, which is consistent with the dynamic PLS model.

The control loop for mill outlet temperature discussed here is mainly for TT boilers based on a CE design with bowl mill (refer to FigureVIII/5.1-2). A similar loop is valid for a ball-and-tube mill, which is discussed separately in the next section. In order to understand the loop in the figure, it is advisable to look at FigureVIII/5.0-1 and the associated PID figure (refer to FigureIII/9.2-4).

The outlet temperature of the coal mill is maintained at desired point so that the coal delivered from the mill is completely dry and achieves the desired temperature. Also, in case of high temperature at the mill outlet, cold air is blown in to reduce the risk of fire.

Normally, the entire requirement of PA flow necessary for a particular load at the mill is initially attempted through HAD so as to ensure complete drying of the coal (especially during rainy seasons) and to raise the mill temperature at a desired point. However, there may be times during hot dry summers when the mill outlet temperature shoots up. This is also never a desired situation because of fire hazard. In fact, to combat this fire hazard, arrangements for mill-inerting systems with inert gases (e.g.,N2 and CO2) need to be made (another purpose is to reduce air supply).

This is more important for ball-and-tube mills, especially when these are operated with one side only. Therefore, CAD comes into operation whenever there is need to bring down the mill temperature. Naturally when this damper operates (i.e., starts opening through process feedback), the hot air damper closes. Here also is a cross-operation of the two dampers but through process and not directly via the loop, so control loop disturbances are fewer than in the old days when cross-operations were implemented in the loop.

Mill outlet temperatures measured by redundant temperature elements and transmitters are put in an error generator. (Temperature element specialties were discussed earlier and so not repeated here.) The output of the error generator drives a PID controller. In general, since temperature is a sluggish parameter it is always advisable to use PID controllers for better results. To prevent controller saturation, controllers are put into service only when both the loops are in auto. The output of the controller through I/P converters normally drives pneumatic actuators meant for CAD.

As stated earlier, only when both HAD and CAD are in auto is the controller put into operation. Since FSSS operations depend on mill temperature conditions, with the help of the limit value monitor (LVM) necessary contacts statuses are shared with FSSS. The loop can be released to auto by an FSSS command. As a protection, both the full opening command and the >x% command for the mill CAD are issued from FSSS so sufficient cold air is circulated. If the auto release command from FSSS is missing or if HAD is in manual, it is necessary to inhibit auto operation so that the operator pay complete attention to the mill outlet temperature. That is the check back signal for FSSS from the loop for damper position.

How breakage energy and force are applied in the mill in order to achieve size reduction in an efficient and effective manner. This is a matter of design and performance of mills and the main subject of this section;

How the material being reduced in size behaves in terms of breakage characteristics such as strength and resulting broken size and shape. This relates to how the material responds to the application of breakage energy and force in terms of rate and orientation of application.

The analysis of individual mill design and operation is complex; so, for simplicity we will consider a typical mill layout for one mill type only. As VSMs have come to represent the bulk of the power station mill fleet, the explanation of mill operations will be based on this mill type. Figure13.2 illustrates the typical key components of a VSM.

In coal milling for power stations, a closed-loop process is used in which the rejects from the classifier are returned to the mill for regrinding. In VSMs, the re-circulation loop is within the mill, but some mill types would have an external loop. In fact, there are a number of re-circulation loops within a mill system. The situation is further complicated by the mill reject streams that reject undesirable material (tramp metal and non-coal bearing rock) from the mill. Generally, the following steps illustrate the path through a VSM:

Air entering through the Port Ring creates a fluidising zone in which heavy material (Mill Rejects) such as rock falls through the Port Ring into the Air Plenum below the Grinding Table and is ejected from the Mill through the Mill Reject System;

From the fluidising zone the ground coal is lifted up inside the Mill Body. Larger particles of coal reach a terminal velocity at which gravity will pull them back on to the Grinding Table for regrinding (Elutriation);

The fineness of the milling product and the capacity of the pulverizer are strictly connected. With increased fineness grows the overall circulation rate of coal in the mill, coal retention time and the flow resistance. As a result, the maximum mill capacity decreases and the rate of change of operational parameters of the furnace system deteriorates. In extreme cases, the performance of the boiler may be limited, and therefore improving the fineness of milling product must often include the modernization of the grinding system. The increase of the throughput of a pulverizer, which compensates the loss of capacity resulting from the increased fineness of coal dust, may be achieved through:

The analysis [45] proves that the maximum capacity of the ball-ring mill is obtained using 5 or 6 balls. Because earlier, as a rule, a greater number of balls was used, there is a possibility to increase the capacity by replacing the existing balls through a lower number of bigger balls. For example, in the EM-70 of FPM SA 9 balls of the diameter 530mm were replaced with 7 of 650mm. Such a modernized milling system can usually be set up on the existing gearbox. It should be noted that the costs associated with replacement of the classifier and the grinding elements are only slightly greater than the costs of the major repair of the mill. In the case where an existing mill has a grinding unit of the number of balls close to 6, the only way to increase performance is to increase the diameter of the balls, but this requires replacement of the mill body.

It has to be mentioned that the number of balls is increased during the mill operation. For example, the initial ten balls, after lowering the diameter below some value (due to wear), is complemented with the 11th additional ball.

If the existing pulverizer is equipped with 6 or 7 balls, increasing of its capacity is also possible by means of replacing the ball-ring system with the bowl and roller milling device. The milling costs per Mg of fuel in both systems are similar. However, with the same dimensions of the milling systems, the capacity of the roller system is about 15%20% higher. Another advantage is the shorter renovation time, which is about 714days for the ring-ball system, while for the roller mill, only 37days. In addition, hardfacing and re-profiling of grinding components are much easier for roller milling systems.

During the modernization of milling plant with compression mills, detailed analysis requires the selection of cross sections of nozzle-rings at the inlet of the drying agent to the mill, in order to minimize the amount of coal removed from the grinding chamber. The preferred solution is a rotating nozzle ring integrated with the bowl. This ring equalizes air distribution pattern at the periphery of the grinding chamber, which allows increasing the capacity of the grinding system without fear of excessive loss of fuel from the mill.

The rotational speed of the vertical spindle mill affects the operating conditions of the grinding unit. At high rotational speeds, the grinding unit operates at high flow of the material in the radial direction and low layers of the material under the grinding elements (balls, rollers). This causes the particles to be discharged without comminution and increases circulation in the mill. At the same time, the flow resistance and milling energy consumption (including erosive and abrasive wear) of the mill will increase.

If the rotational speed is too low, the material flow will decrease significantly. The thickness of the material layer under grinding elements will exceed the maximal height for which the particles are drawn under the grinding elements, causing excessive buildup of the material in front of the grinding elements. The material outflow from the bowl (or the bottom ring) is not supported by grinding elements movement, which results in higher flow resistance and uneven loading of the nozzle ring. These factors cause a significant decrease in mill efficiency.

Tests carried out for some industrial mills have proven that the change of grinding unit rotational speed strongly influences mill capacity. Therefore, by changing the gear ratio of the mill, both milling capacity and dynamic properties of the mill can be improved.

The fuel injector is designed to introduce the dispersed coal particles in a medium of air into the furnace. The mass ratio of air to coal is dependent on the coal mill manufacturer and usually ranges from 1.75 to 2.2 with a typical value of 2.0. An air to fuel mass ratio of 1.8 produces a primary stoichiometric ratio of approximately 0.16, or 16% of the air necessary for complete combustion of the coal. According to the previous discussion of NOx formation chemistry it is expected that lower NOx concentrations are achievable with lower primary gas/fuel ratios. The diameter of the coal transport line is constrained by the minimum velocity at which coal particles remain entrained in the carrier gas, or the coal layout velocity. This velocity is generally accepted to be 50 ft/s (Wall, 1987). The dimension of the fuel injector itself is selected by the burner manufacturer to provide the desired gas and particle velocity at the exit of the burner. The velocity here is anywhere from 50 to 115 ft/s and is chosen to provide the desired near flame aerodynamics impacting the mixing between the primary and secondary air. In many applications, there is an elbow, scroll or turning head in the coal pipe at the burner inlet. Such inlet devices result in roping, or an uneven distribution of coal within the fuel injector. Many manufacturers use components to redistribute the coal particles with an even density around the circumference of the fuel injector at its exit. A uniform distribution is typically desired to minimize NOx while maximizing combustion efficiency. The material of the fuel injector is chosen to be reliable under high temperatures and erosive conditions and is often a high grade of stainless steel. Another component of the fuel injector that is found on many commercial low NOx burners is a flame stabilizer. The function of this feature is to provide a stagnation zone at the fuel injector exit on the boundary between the primary and secondary air where small-scale mixing of coal and air occurs, providing ideal conditions for ignition and flame attachment.

Sulfur in coal can affect power plant performance in several ways. Sulfur in the form of pyrite (FeS2) can lead to spontaneous combustion and contributes to the abrasion in coal mills; therefore, if a lower quality coal containing pyrite is used in place of the design coal it can lead to problems. As the overall sulfur concentration increases, so do the emissions of sulfur dioxide (SO2) and sulfur trioxide (SO3). While the majority of the sulfur is converted to SO2 (about 12% of the sulfur converts to SO3), the increase in SO3 emissions increases the flue gas dew point temperature, which in turn can lead to corrosion issues. Most countries have legislation restricting SO2 emissions and utilizing higher sulfur coals will require additional SO2 controls (Miller, 2010). In some cases, the use of low quality fuels may impair the desulfurization equipment because of a greater quantity of flue gas to be treated (Carpenter, 1998).

All power stations require at least one CW pump and one 50% electric boiler feed pump available and running to start up a unit. In addition, fossil plant requires either coal mills or oil pumps and draught plant, e.g., FD and ID fans, PA fans, etc. Gas-cooled nuclear plant requires gas circulators running on main motors or pony motors at approximately 15% speed, whereas water reactors require reactor coolant pumps. Both nuclear types require various supporting auxiliaries to be available during the run-up stages, the poor quality steam being dumped until the correct quality is achieved.

When steam of correct quality is being produced, the turbine-generator will be run up to speed with all the unit supporting auxiliaries being powered from the station transformers via the unit/station interconnectors.

The Amer 9 plant utilizes both direct and indirect co-firing configurations. The plant co-fires biomass pellets up to a maximum of 1200ktyr1, generating 27% by heat through two modified coal mills. Only wood-based fuel has been used since 2006, due to reduced subsidies for agricultural by-products.

For the indirect co-firing option, low-quality demolition wood is gasified in a CFB gasifier at atmospheric pressure and a temperature of approximately 850C. The raw fuel gas is cleaned extensively and combusted in a coal boiler via specially designed low-CV gas burners. An advantage of this concept is that there is no contamination of the fuel gas as it enters the coal-fired boiler. This allows a wide range of fuels to be co-fired within existing emission constraints while avoiding problems with ash quality. The challenge, as always, is working within the relatively stringent fuel constraints while avoiding the inevitable high investment costs [22]. Amer 8 also co-fires at high biomass feed levels but uses a standard hammer mill configuration.

Coastal power stations, due to their proximity to major urban areas, tend to be better managed in terms of production consistency and environmental standards. In China and India in particular, coastal power stations tend to mill coal more finely, use superior emissions to control technologies, and have a tendency to use higher-quality coal blends. The result is higher quality and greater consistency in fly ash chemical and physical properties, to the extent that the material is more desirable to local cement manufacturers and those in other domestic markets along the coast. This material is typically allocated in multiyear contracts.

Adding to this, coastal urban areas usually have high volume demand for construction materials. Coastal power stations are often fully contracted to supply cement-grade fly ash, as well as the run of station ash and bottom ash to serve this demand. This is particularly clear in China, where coastal cities such as Shanghai and Shenzhen have seen dramatic urban development over the last 20years. During this period, both cities have been net importers of fly ash, drawing from both inland and domestic coastal sources.

The cost of loading material onto vessels, whether in containers or bulk, is much lower at coastal power stations due to lower local land transport costs. As a result, coastal power stations have been logical first choices for exporters/importers, and many have already developed either domestic coastal markets for their ash or export markets.

classification performance of model coal mill classifiers with swirling and non-swirling inlets - sciencedirect

classification performance of model coal mill classifiers with swirling and non-swirling inlets - sciencedirect

The classification performance of model coal mill classifiers with different bottom incoming flow inlets was experimentally and numerically studied. The flow field adjacent to two neighboring impeller blades was measured using the particle image velocimetry technique. The results showed that the flow field adjacent to two neighboring blades with the swirling inlet was significantly different from that with the non-swirling inlet. With the swirling inlet, there was a vortex located between two neighboring blades, while with the non-swirling inlet, the vortex was attached to the blade tip. The vorticity of the vortex with the non-swirling inlet was much lower than that with the swirling inlet. The classifier with the non-swirling inlet demonstrated a larger cut size than that with the swirling inlet when the impeller was stationary (~0rmin-1). As the impeller rotational speed increased, the cut size of the cases with non-swirling and swirling inlets both decreased, and the one with the non-swirling inlet decreased more dramatically. The values of the cut size of the two classifiers were close to each other at a high impeller rotational speed (120rmin-1). The overall separation efficiency of the classifier with the non-swirling inlet was lower than that with the swirling inlet, and monotonically increased as the impeller rotational speed increased. With the swirling inlet, the overall separation efficiency first increased with the impeller rotational speed and then decreased when the rotational speed was above 120rmin-1, and the variation trend of the separation efficiency was more moderate. As the initial particle concentration increased, the cut sizes of both swirling and non-swirling inlet cases decreased first and then barely changed. At a low initial particle concentration (<0.04kgm3), the classifier with the swirling inlet had a larger cut size than that with the non-swirling inlet.

what can be used to grind slag? |22-180 m vertical roller mill of hcm has a history of 30 years

what can be used to grind slag? |22-180 m vertical roller mill of hcm has a history of 30 years

The utilization rate of coal mine energy in China is relatively high, because there are a lot of slag produced by coal industry smelting every year. In order to avoid these slag damage to the environment and increase the recycling utilization rate, slag grinding millis a more thorough and effective way of utilization. What is the best way to grind slag? How about HCM manufacturing grinding mill?

Slag powder is a kind of melt which floats on the surface of liquid material such as metal during pyrometallurgical process. Its composition is mainly composed of oxides (silica, alumina, calcium oxide, magnesium oxide), and also contains sulfide and a small amount of metal.

According to the different slag grinding chemical composition and mineral composition are different, its chemical composition is mainly composed of silicon, aluminum, iron, calcium compounds. And they all contain a small amount of magnesium, titanium, potassium, copper, phosphorus and trace cyanide. Their main forms are acid salt, aluminosilicate, oxide and sulfate. It can be used as building materials, often used in the production of coal slag or slag concrete large sample, also can be used for road construction or building thermal insulation, sound insulation materials.

For most of the slag grinding market, the Raymond millcan be adjusted continuously for 80-400 mesh fineness of slag grinding by HCMilling (Gulin HongCheng). We have a large number of customer case sites to allow you to make an appointment for an investigation. In view of the grinding demand of slag, slag, tailings, water slag, coal mine slag and other solid slag in the solid slag industry, if there is higher demand in fineness and quality, HCMilling(Gulin HongCheng) recommends using slag vertical grinding mill equipment, with a production of 5-700 tons, so as to realize the recovery and utilization of tailings.

*Applicable materials*It has high capacityand high efficiency for grinding of various nonmetallic mineral materials with Morse hardness below 7 and humidity less than 6%. For example, limestone, calcite, marble, heavy calcium, kaolin, barite, bentonite, pyrophyllite and other grinding effects are good.

If you have a demand for slag grinding mill equipment, pls contact [email protected] call at , HCM will tailor for you the most suitable grinding mill program based on your needs, more details please check www.hcmilling.com.

Simply complete the form below, click submit, you will get the price list and a Hongcheng representative will contact you within one business day. Please also feel free to contact us by email or phone. ( * Denotes a required field).

Copyright 2004-2018 by Guilin Hongcheng Mining Equipment Manufacture Co. LTD All rights reserved Tel: |FAX: | E-mail: [email protected] | After-Sales-Service:+86-400-677-6963.

Related News
  1. grinding machine for musur dal into finest powder
  2. establishment of poultry feed mill
  3. grinder machine mumbai
  4. tirana efficient small kaolin powder grinding mill sell
  5. beneficiation plant diamond
  6. lnj fluidized bed mica ultrafine powder grinding mill machine price
  7. floor grinder rent lowes
  8. race powder with grinding machine
  9. powder grinding mill ave
  10. rubber powder mills and machines
  11. sfr flotation cells spence copper
  12. types of vertical roler mill
  13. kyanite hydrastroke feeders
  14. symons cone crusher 700
  15. mineral crusher west bengal
  16. magnetic 8x10 sheets
  17. double roll crusher indonesia supplier
  18. impact crusher gallerys
  19. what is a impact crusher used for
  20. stone impact crusher in algeria