Hello, my partner! Let's explore the mining machine together!

[email protected]

coke oven coal crusher

coke making in byproduct coke oven batteries - e plant maintenance

coke making in byproduct coke oven batteries - e plant maintenance

Coke constitutes 50% of the cost of production of hot metal in a Blast Furnace. The cost competitiveness of the hot metal production primarily depends on cost effective production of high quality coke. Metallurgical coke is used for reducing iron ore to iron in blast fce. 90% of the metallurgical coke is used in Iron making in Blast Furnace and Steel Making processes. The balance is used by foundry to melt metal and preparing mould.

The coking process consists of heating coal in the absence of air to drive off the volatile compounds. The resulting material is a carbon mass called coke which is a hard, but porous carbon material. The byproduct coke oven recovers volatile matter of coal in the form of coke oven gas, tars, and oils.

Byproduct coke making process involves carbonization of coal at high temperatures in an atmosphere where there is no oxygen. The process removes volatile matter of coal and concentrates the carbon. In this process the off gas is collected and sent to the byproduct plant where various byproducts (coke oven gas, tar, ammonia, and crude benzol) are recovered.

Coking coal is an important raw material in the production of coke in the byproduct coke ovens since it decides the coke properties. The required coke properties are uniform size, good strength (CRI, CSR and micum values), porosity with minimum volatile matter and minimum ash.

Coking coal may be classified on the basis of their coking properties. They are prime coking coal, medium coking coal, semi or low coking coal. Low moisture, ash, sulphur and phosphorous content in the coal are desirable for production of good quality coke. Some of the other properties of coals affecting quality of coke are particle size, bulk density, and weathering of coal. Coking coals also may have low, medium, or high volatile matter. Coking temperature, coking rate, soaking time, quenching practice, and coke handling also affects coke quality

The coal that is charged to the coke ovens is usually a blend of two or more of coking coals. Blending is required to control the properties of the resulting coke, to optimize the quality and quantity of byproducts, and to avoid the expansion exhibited by certain types of coal that may cause excessive pressure on the oven walls during the coking process.

Conveyor belts transfer the coal from coal storageas needed to the mixing bins where the various types of coals are stored. The blended coal is then transported from the mixing bins to the coal crusher where it is pulverized to normally a size of -3 mm.

Coal handling plant and coal preparation section prepare coal blend suitable for carbonization. Various steps involved are unloading and storage of coal, blending of coal of various grades, coal crushing and transport to coal storage tower.

The pulverized coal is then mixed and blended, and sometimes water and oil are added to control the bulk density of the blend. The prepared coal blend is transported to the coal storage tower on the top of the coke oven battery.

Coal needs to be stored at various stages of the preparation process, and conveyed around the coal preparation section. Crushing and screening are the important part of coal handling plant. Crushing reduces the overall size of the coal so that it can be more easily processed and handled. Screens are used to createthe size rangeof coal. Screens can be static, or mechanically vibratedByproduct coke oven batteries

Coke ovens are the chambers made of refractories to convert coal into coke by carbonizing coal in absence of air and there by distilling the volatile matter out of coal. Byproduct coke oven plant consists of one or more coke oven batteries containing number of coke ovens (can vary from 20 to 100 in each battery). The coal is charged to the coke oven through charging holes. Typical cross section of a 7 m high coke oven battery is shown in Fig 2.

A weighed amount of coal is discharged from the coal storage tower into a charging car, which is the charging vehicle that can travel the entirelength of the batteryand can be positioned infront of the empty, hot oven, the lids on the charging holes are removed , and the coal is discharged from the hoppers of the charging car into the oven.

To minimize the escape of gases from the oven during charging, steam aspiration is used to draw gases from the space above the charged coal into the collecting main. The discharge of coal from the hoppers is staged by controlling the sequence in which each hopper is emptied to avoid peaks of coal that may block the space above the coal, which hinders the removal of gases generated during charging. Near the end of the charging sequence, peaks of coal in the oven are leveled by a steel bar that is cantilevered from the pusher car through a small door on the side of the oven, called the leveler door. This leveling process aids in uniform coking and provides a clear vapour space and exit tunnel for the gases that evolve during the coking process to flow to the gas collection system. After the oven is charged with coal, the leveling door is closed, the lids are replaced on the charging ports and sealed (luted) with a wet claymixture, the aspiration is turned off,and the gases are directed into the off take system and collecting main.

The transformation of coal to coke starts taking place. The heat is transferred from the heated brick walls into the coal charge. At about 375 to 475 deg C, the coal decomposes to form plastic layers near each wall. At about 475 to 600 deg C, there is a marked evolution of tar, and aromatic hydrocarbon compounds, followed by re-solidification of the plastic mass into semi-coke. At 600 to 1100 deg C, the coke stabilization phase begins. This is characterized by contraction of coke mass, structural development of coke and final hydrogen evolution. During the plastic stage, the plastic layers move from each wall towards the centre of the oven trapping the liberated gas and creating in gas pressure build up which is transferred to the heating wall. Once, the plastic layers have met at the centre of the oven, the entire mass has been carbonized. The incandescent coke mass is pushed from the oven and is wet or dry quenched.

The thermal distillation takes place in groups of ovens called batteries. A battery consists of a number of adjacent ovens with common side walls that are made of high quality silica and other types of refractory brick. The wall separating adjacent ovens, as well as each end wall, is made up of a series of heating flues. At any time, half of the flues in a given wall are burning gas while the other half are conveying waste heat from the combustion flues to a checker brick heat exchanger and then to the combustion stack. Every 20 to 30 minutes the battery reverses, and the waste heat flues become combustion flues while the combustion flues become the waste heat flues. This process provides more uniform heating of the coal mass. The operation of each oven is cyclic, but the battery contains a sufficiently large number of ovens to produce an essentially continuous flow of raw coke oven gas. The individual ovens are charged and emptied at approximately equal time intervals during the coking cycle. Coking proceeds for 15 to 18 hours to produce blast furnace coke. During this period, volatile matter of coal distills out as coke oven gas. The coking time is determined by the coal blend, moisture content, rate of under firing, and the desired properties of the coke. When demand for coke is low, coking times can be increased to 24 hours. Coking temperatures generally range from 900 to 1100 deg C and are kept on the higher side of the range to produce blast furnace coke. Air is prevented from leaking into the ovens by maintaining a positive back pressure in the collecting main. The ovens are maintained under positive pressure by maintaining high hydraulic main pressure of around 10 mm water column in batteries. The gases and hydrocarbons that evolve during the thermal distillation are removed through the off take system and sent to the byproduct plant for recovery.

The coking is complete when the central temperature in the oven is around 950-1000 deg C. At this point the oven is isolated from hydraulic mains and after proper venting of residual gases, the doors are opened for coke pushing. At the end of coking period the coke mass has a high volume shrinkage which leads to detachment of mass from the walls ensuring easy pushing

The quenched coke is taken by conveyor to a crushing and screening plant also called coke crushing and sorting plant. Here the coke is crushed and screened to the required size fractions. During crushing and screening, coke is sorted in three size fractions. These are coke breeze (size 10 mm), nut coke (size +10 mm to 25 mm) and blast furnace coke (+25 mm to 80 mm). The sized blast furnace coke and nut coke are transported to their respective storage systems at the blast furnace. The coke breeze is sent to the sinter plant.

Oh my goodness! an amazing article dude. Thanks Nevertheless Im experiencing problem with ur rss . Dont know why Unable to subscribe to it. Is there anybody getting equivalent rss drawback? Anyone who knows kindly respond. Thnkx

Dear Shawn sisneros,thanks for your complement. I am honoured.such complement are always big motivators. what kind of problems are you facing with my rss?can you be specific I am sure i will be abel to solve. P.K.

coke oven equipment indicon westfalia

coke oven equipment indicon westfalia

Indicon Westfalia manufactures the essentials of coke oven equipment: charging cars, guide cars, quenching cars and locomotives. Our equipment offers a start-to-finish automated, tailor-made, and eco-friendly method of treating and transforming coke into a resource that can be used by downstream consumers.

The coal-charging car charges coke ovens with coal charge. Its primary functions include opening/shutting the coal tower gates, lifting/replacing charging hole lids, and transferring coal charge from the bunkers into the coke oven. Indicon Westfalias charging cars are designed with magnetic lid lifters, lid cleaners, constant volume hoppers, gastight spillage coal gates and telescopes, cross battery oven top vacuum cleaners. These features empower the charging cars to travel from coal towers to coke ovens and back with maximum efficacy.

The guide car conveys the coke from the oven into the quenching car. Apart from the automatic opening/closing of the oven doors, Indicon Westfalias guide cars are equipped with cleaning systems for incline and leaning oven doors, benches, and frames, a hood system that removes emissions that are consequent to oven operations, and a coke spillage collection system. These functionalities allow our guide cars to operate within stringent pollution control standards and specific oven/battery conditions.

The quenching car receives and transports hot coke from the coke oven through the quenching tower to the coke wharf. Indian Westfalias quenching cars are either locomotive pulled or self-propelled; they are designed to enable easy exchange of parts which are subject to wear and tear, and feature fixed sloping bottoms with discharge gates which are pneumatically or hydraulically operated. Our quenching cars are thus manufactured to ensure a safe and optimum method to distribute the pushed coke.

Indicon Westfalia designs and manufactures customer specific rail vehicles for heavy duty applications. We have a wide range of products that cater to the requirements of tunnelling and main-line locomotives. We design our locomotives to ensure easy maintenance, optimum performance, and low-energy consumption.

Indicon Westfalia is an original equipment manufacturer of multi-function containers, material handling systems and coal mining equipment with an emphasis on quality and customization. We pride ourselves on being a bespoke high-end engineering solutions provider.

Related News
  1. west bengal jaw crusher price list 65 tph capacity
  2. buy buy jaw crushers in maharashtra good quality
  3. nuwara eliya efficient new soft rock stone crushing machine manufacturer
  4. complete gold dressing plant whole gold mining machine for
  5. lump crusher in ahmedabad gujarat india manufacturer and
  6. stone jaw crusher machine manufacturer in india
  7. south african mining equipment suppliers mining equipment manufacturers
  8. quartz mining quarry
  9. fuel consumption of mining equipment
  10. pre independence german gold mining in kenya
  11. tool wet ball mill agathon
  12. rcyd 18 magnetic separator
  13. stone crusher equipment afghanistan
  14. how much do mobile crushers cost
  15. milling machines of gold
  16. phosphate beneficiation flotation
  17. high frequency screen 02
  18. ball mill steel ball handling solutions
  19. best ice crusher machine
  20. diesel stone crushers