Hello, my partner! Let's explore the mining machine together!

[email protected]

cone crusher adalah

pebble crushing circuit design

pebble crushing circuit design

The design of a pebble crushing circuit as an integral part of a North American style primary autogenous or semi- autogenous grinding circuit presents certain challenges to the process design engineer. Initially, the process requirement for pebble crushing has to be determined as part of:

If pilot plant-scale testwork is not possible, the process design engineer will have to rely on certain indicators which, individually or in combination, can be interpreted to predict the necessity of a pebble crushing circuit for achieving production objectives. The usual definition of critical size is that size range, typically 12-50 mm, which can build up in a mill charge due to the inability of or in the absence of a sufficient complement of larger ore particles and/or steel media to crush it.

Rock Quality Designation, or RQD, has been used since the 1960s to provide a measure of the quality of a rock mass. The total length of intact lengths of drill core, each greater than or equal to 10 cm, divided by the total length of drill core over which RQD is measured with the result expressed as a percentage.

Only the smaller pieces of core resulting from close jointing, faulting, weathering or zones of weaker rock, e.g., fault gouge, are discounted. If core is broken by handling or by the drilling process, i.e., the existence of fresh broken surfaces, the broken pieces should be fitted together and considered as one piece provided they form the requisite length.

Determination of the unconfined compressive strength of a particular rock or ore sample is useful in assessing the potential for pebble formation and the probability of employing autogenous grinding and pebble milling.

The pilot plant was run with a primary autogenous mill and a secondary pebble mill. New feed was run-of-mine ore, and pebbles were extracted from the primary mill for media addition to the secondary mill.

Analysis of Bond work index test results for crushing, rod milling and ball milling will indicate uniformity or otherwise of breakage characteristics in different size ranges. Very often one value is much higher (or lower) than the others and such variations can govern the power distribution between primary and secondary stages of grinding. Also, these observations will give an indication of the potential existence of a critical size relative to autogenous or semi-autogenous grinding.

It has been shown (Barratt, 1989) that the operating work index for a single-stage ball milling circuit (SSBM) can be used to estimate overall specific power requirements for a power-efficient SAG or SABC circuit. By definition, single-stage ball milling circuits are designed based on components for secondary/tertiary crushing, rod milling and ball milling using the appropriate Bond work indices. A modified empirical formula can therefore be used to calculate the overall specific power requirement, designated Essbm, following the basic procedure for these components. If the original empirical formula developed by Barratt is used based on the same Bond work indices for crushing, rod milling and ball milling, and the resultant primary mill specific power consumption, ESAG, is deducted from ESSBM, the required specific power consumption for secondary ball milling, EBM, can be calculated, hence:

Although mineralogy plays a part in the values of Bond work index which are determined for an ore, it is important to demonstrate the variation of Bond work index between different stages of comminution. Data in Table 1 illustrates such variation with rock type, degree of oxidation and potassic alteration in a sulphide porphyry copper orebody. It can be seen that in this case:

Installation of pebble crushing facilities can be scheduled for initial production or at a later date depending upon the process engineers interpretation of ore characteristics and ore production schedules.

It is important in pilot plant testing that the test mill charge level be maintained in the normal industrial-scale range of 25-30 percent by volume to ensure meaningful results. There is the temptation, held by some, to open up the pebble ports to, say, 75-90 mm from 50-65 mm. Also, any increase in the nominal aperture of pebble ports automatically alters the power split between primary and secondary mills and places a heavier load on the secondary mill to the point where:

Once a critical size has been established in a primary mill, an efficient means of extracting it, crushing it and returning the crushed product to the primary mill has to be designed. In some plants, crushed pebbles are advanced in part to secondary grinding.

Pulp Discharger Design: Structurally, pulp dischargers should be bolted individually to the discharge head regardless of whether they are castings or fabricated steel. If these design elements are not followed, the risk of mill shutdowns due to shifting pulp dischargers, lifters and grate sections, etc., and loose or broken bolts is increased.

It is felt that radial pulp lifters would perform better at higher mill speeds because at lower speeds, e.g., 72% C.S., pulp would be lifted but would fall back onto the lower advancing edge of the lifter. With spiral lifters at higher mill speeds, the possibility exists of pulp, having been lifted, falling onto the curved upper surface of the advancing lifter whereas at lower speeds it would miss it.

The Crusher: Selection of pebble crushers has traditionally centred on the Symons short head cone crusher. Recently, Omnicone crushers have been used with success. Particular attention should be paid in the application to:

It is important to construct a by-pass system, usually through a flop gate and chute, so that pebbles can be recycled directly to the primary mill feed in the event of a maintenance shut down for the crusher. The primary mill would then operate at reduced throughput and circuit availability would be enhanced.

Related News
  1. cone crusher parts catalogue 1007 party per day
  2. economic large ilmenite sand maker sell in new delhi
  3. crusher cone fire pit
  4. small single cylinder cone crusher animation in haryana
  5. ras al khaimah economic environmental rock classifier sell
  6. gwangju economic new gangue symons cone crusher manufacturer
  7. small symons cone crusher for mining in brunei
  8. symons cone crusher working
  9. symons cone crusher components
  10. dxn hydraulic vsi crusher silica mining
  11. rock crusher manufacturers
  12. marketprice stone crusher machine in delhi sand making stone quarry
  13. impact 360 institute
  14. widely large capacity mining plant for gabbro
  15. industrial dryer manufacturer
  16. sri lanka efficient small talc dryer machine manufacturer
  17. wet iron ore magnetic separator in south africa
  18. roll mill crusher
  19. list of mining equipment producers
  20. crushing production line belt