Hello, my partner! Let's explore the mining machine together!

[email protected]

copper grate ball mill

wet ball mill/wet type ball mill/wet ball milling machine--zhengzhou bobang heavy industry machinery co.,ltd

wet ball mill/wet type ball mill/wet ball milling machine--zhengzhou bobang heavy industry machinery co.,ltd

Wet type ball mill are mostly used in the industry production. It is to increase the high grinding efficiency under the ball mill grinding and striking, from which the granularity is even and no flying dust with little noise, being the most universal powder machine in the benefication as powder grinding the ferrous metal like gold, silver, plumbum, zinc,copper,molybdenum,manganese,tungsten etc, as the nonmetal powder grinding like graphite,feldspar, potash feldspar, phosphorus ore, fluorite, clay, and swell soil etc. The wet type ball mill need to add the liquid into the grinding ball media auxiliary (water or ethanol). The material output gate is trumpet shape, with screw device inside, easy to discharging the material.

Copyright Zhengzhou Bobang Heavy Industry Machinery Co.,Ltd. E-mail : [email protected] Tel0086- 86656957 Address No.11 West Construction Road, Zhongyuan District,Zhengzhou City,Henan Province, China

overflow vs grate discharge ball or mill - why retrofit

overflow vs grate discharge ball or mill - why retrofit

Allow metocompare:Ball mills can be of the overflow or of the grate discharge type. Overflow discharge mills are used when a product with high specific surface is wanted, without any respect to the particle size distribution curve. Overflow discharge mills give a final product in an open circuit.

Grate discharge mills are used when the grinding energy shall be concentrated to the coarse particles without production of slimes. In order to get a steep particle size distribution curve, the mill is used in closed circuit with some kind of classifier and the coarse particles-known as classifier underflow-are recycled.

In the past, I had worked with +10% as an expected increase created by the conversion. How much capacity you gain by using grate discharge over overflow discharge on a mill =The +20% data comes from an old paper.

BallMills have a very large discharge opening or area and smaller area for incoming feed. The gradient between the incoming feed opening and the discharge near the periphery of the shell provides a faster migration of the fines than the oversize particles. In deep pulp level mills commonly known as overflow mills this migration can not occur since material enters and leaves at the same level by displacement only. Independent tests have shown that regardless of mill shape or design, the discharge product of an overflow mill will be the same no matter at which end the feed enters.

Grate Discharge Ball mills withlow pulp levels benefit from the full impact of the grinding media acting on the ore particles, as it falls into the shallow pulp. With a deep pulp level the grinding media is cushioned in the pulp, thus losing its energy and reducing its grinding ability. Grate Discharge Ball Mills have shown 25% to 45% more tonnage ground and a substantial reduction in power consumed per ton of material compared size for size with overflow mills.

A general statement can be made that the closer the discharge is to the periphery of the shell, the quicker the material will pass through and less overgrinding will take place. This is important in both rod mill and ball mill grinding. First, regardless of how fine a grind is required, overgrinding is costly and undesirable. The ideal condition is to remove the particles as soon as they have reached the optimum size. Secondly, in grinding applications where a minimum amount of fine material is preferred, again a rapid flow through the grinding mill is required. These can be accomplished with the grate for ball mill operations, or the various Grate Discharge discharge arrangements for the rod mill.

The discharge end of the conventional Open End Rod Mill is virtually open as the name implies. As a means of controlling splash and to prevent unruly rods from moving out of the mill a discharge plug or plug door arrangement is furnished. The use of this construction permits pulp to discharge freely around the annular opening between the plug and the discharge trunnion liner. By simple removal of the plug the full large area of the discharge end may be used for re-rodding, inspection of the mill when in operation, and an easy access to the mill interior for relining. This large opening does away with the necessity of manholes for mill entrance as commonly employed in the overflow type mill. The plug door arrangement is a great time saver during re-rodding and re-lining operations.

On smaller diameter Grate Discharge Rod Mills a discharge plug is furnished mounted on the trunnion liner and extending through to line up with the discharge head liners. The larger diameter Grate Discharge Mills are furnished with a discharge housing arrangement independent of the mill. A hinged door is mounted in this housing and easily swings in or out of the discharge trunnion liner. These housings are also used to control the direction of discharge pulp flow leaving the mill. Such flow may be directed to the left, right, or directly below the mill centerline.

The discharge housing is of very heavy construction for strength and rigidly. Maintenance of this housing is kept at a minimum, the only wearing part being the replaceable Manganese Steel plug door liner.

The discharge end of a Grate Discharge Ball Mill is fitted with grate sections approximately 3 thick, made of special heat treated alloy steel developed for this particular application. The grate sections have tapered openings between and 7/8 dependent upon the specific grinding application. These are selected to provide the greatest efficiency for any particular job. The grate sections are held in place by tapered Manganese Steel side clamp bars, a center discharge liner, and end clamp bars. The discharge grates are very simple to install and require no attention during operation. The overall life of the discharge end parts generally is greater than that of the feed head liners or shell liners. The discharge end of the Grate Discharge Ball Mill has at least ten times the discharge opening area, through the grate slots, compared to the common trunnion overflow type mill. The discharge grates are designed to run clean and free of any blinding or choking. The pulp level in the mill may be varied by merely changing the pulp dilution. There is no complicated mechanical arrangement to compensate for pulp level changes. The side clamp bars and center discharge liner besides holding the grate sections in place, act as a means of stirring up the ball charge and reduces the amount of wear on the grate sections. The pulp discharges through the grate slots into a lifter compartment in the discharge head, lined with replaceable wearing parts. This lifting compartment elevates the discharge pulp up to the level of the discharge trunnion liner opening and spills this against a deflecting cone which directs it out through the trunnion liner.

The above is a Grate Discharge Mill head with discharge grates, side clamp bars, end damp bars, and center discharge liners in place. The grates and side clamp bars are accurately ground to fit the machined surfaces of the discharge head lifters.

We have already discussed grinding in a general way and have referred numerous times to the grate dischargeprinciple of grinding. To illustrate roughly this principle, take a certain weight of crushed ore and grind it with a mortar and pestle until all of the ore particles will pass through a 65-mesh screen. Then take a similar sample but this time grind for a few minutes and screen at 65-mesh removing the finished material, then return the oversize particles and grind for another short period of time and repeat the screening operation. You would find that the actual net grinding time required for the second sample is about half the time required under the first condition. This same process takes place in the Grate Discharge Ball Mill. It must be borne in mind that it is the classifier which determines the size of the finished product, not the grinding mill itself. The Grate Discharge Mill permits a quick discharge of the finished material into the classifier which makes the desired mesh size separation and returns the oversize particles to the mill for another pass.Contrary to the usual belief, material does not discharge through the grates at the bottom. In fact it is carried up in the ball load so that the greater portion passes out from the ball load on the upturning side of the mill, in the grate area from about half way below the centerline of the mill, on up to the point where the balls start to leave the shell on their downward paths. This indicates then that the thick pulp carried in the mill is well within the ball mass where the actual grinding is taking place. The discharge grates are not to control the size of particle discharged, but merely to retain the grinding balls within the mill, provide the full discharge area required, and form the steep gradient between the feed entrance and product discharge.

To illustrate the comparison of the grate discharge Ball Mill to an overflow type of mill we are showing on page 31 several actual case histories of installations where the performance of grate discharge mills versus overflow mills have been proven. In each such test, run for long periods of time, the ore characteristics and size of feed were maintained identical so that the tests could be compared under like conditions. It will be noted that in each case the grate discharge Mill provided a high increase in tonnage with a lesser increase in power consumption so that the actual KWH per ton consumed was reduced. From these field examples you can verify the previous statement that an overflow type of mill has somewhere near 70% the capacity of the grate mill. These tests were conducted independently by the actual operating companies involved.

The above tables list some of the most common Grate Discharge Ball Mill sizes. Capacities are based on medium hard ore with mill operating in closed circuit under wet grinding conditions at speeds indicated. For dry grinding, speeds are reduced and capacities drop between 30% to 50% .

The above dimensions are approximate and for preliminary use only. Right hand mills are shown. For left hand mills put drive on opposite side. Drive may also be located at feed end. but clearance of scoop must be considered.

The above dimensions are approximate and for preliminary use only. Right hand mills are shown. For left hand mills put drive on opposite side. Drive may also be located at feed end, but clearance of scoop must be considered.

ball mills

ball mills

In all ore dressing and milling Operations, including flotation, cyanidation, gravity concentration, and amalgamation, the Working Principle is to crush and grind, often with rob mill & ball mills, the ore in order to liberate the minerals. In the chemical and process industries, grinding is an important step in preparing raw materials for subsequent treatment.In present day practice, ore is reduced to a size many times finer than can be obtained with crushers. Over a period of many years various fine grinding machines have been developed and used, but the ball mill has become standard due to its simplicity and low operating cost.

A ball millefficiently operated performs a wide variety of services. In small milling plants, where simplicity is most essential, it is not economical to use more than single stage crushing, because the Steel-Head Ball or Rod Mill will take up to 2 feed and grind it to the desired fineness. In larger plants where several stages of coarse and fine crushing are used, it is customary to crush from 1/2 to as fine as 8 mesh.

Many grinding circuits necessitate regrinding of concentrates or middling products to extremely fine sizes to liberate the closely associated minerals from each other. In these cases, the feed to the ball mill may be from 10 to 100 mesh or even finer.

Where the finished product does not have to be uniform, a ball mill may be operated in open circuit, but where the finished product must be uniform it is essential that the grinding mill be used in closed circuit with a screen, if a coarse product is desired, and with a classifier if a fine product is required. In most cases it is desirable to operate the grinding mill in closed circuit with a screen or classifier as higher efficiency and capacity are obtained. Often a mill using steel rods as the grinding medium is recommended, where the product must have the minimum amount of fines (rods give a more nearly uniform product).

Often a problem requires some study to determine the economic fineness to which a product can or should be ground. In this case the 911Equipment Company offers its complete testing service so that accurate grinding mill size may be determined.

Until recently many operators have believed that one particular type of grinding mill had greater efficiency and resulting capacity than some other type. However, it is now commonly agreed and accepted that the work done by any ballmill depends directly upon the power input; the maximum power input into any ball or rod mill depends upon weight of grinding charge, mill speed, and liner design.

The apparent difference in capacities between grinding mills (listed as being the same size) is due to the fact that there is no uniform method of designating the size of a mill, for example: a 5 x 5 Ball Mill has a working diameter of 5 inside the liners and has 20 per cent more capacity than all other ball mills designated as 5 x 5 where the shell is 5 inside diameter and the working diameter is only 48 with the liners in place.

Ball-Rod Mills, based on 4 liners and capacity varying as 2.6 power of mill diameter, on the 5 size give 20 per cent increased capacity; on the 4 size, 25 per cent; and on the 3 size, 28 per cent. This fact should be carefully kept in mind when determining the capacity of a Steel- Head Ball-Rod Mill, as this unit can carry a greater ball or rod charge and has potentially higher capacity in a given size when the full ball or rod charge is carried.

A mill shorter in length may be used if the grinding problem indicates a definite power input. This allows the alternative of greater capacity at a later date or a considerable saving in first cost with a shorter mill, if reserve capacity is not desired. The capacities of Ball-Rod Mills are considerably higher than many other types because the diameters are measured inside the liners.

The correct grinding mill depends so much upon the particular ore being treated and the product desired, that a mill must have maximum flexibility in length, type of grinding medium, type of discharge, and speed.With the Ball-Rod Mill it is possible to build this unit in exact accordance with your requirements, as illustrated.

To best serve your needs, the Trunnion can be furnished with small (standard), medium, or large diameter opening for each type of discharge. The sketch shows diagrammatic arrangements of the four different types of discharge for each size of trunnion opening, and peripheral discharge is described later.

Ball-Rod Mills of the grate discharge type are made by adding the improved type of grates to a standard Ball-Rod Mill. These grates are bolted to the discharge head in much the same manner as the standard headliners.

The grates are of alloy steel and are cast integral with the lifter bars which are essential to the efficient operation of this type of ball or rod mill. These lifter bars have a similar action to a pump:i. e., in lifting the product so as to discharge quickly through the mill trunnion.

These Discharge Grates also incorporate as an integral part, a liner between the lifters and steel head of the ball mill to prevent wear of the mill head. By combining these parts into a single casting, repairs and maintenance are greatly simplified. The center of the grate discharge end of this mill is open to permit adding of balls or for adding water to the mill through the discharge end.

Instead of being constructed of bars cast into a frame, Grates are cast entire and have cored holes which widen toward the outside of the mill similar to the taper in grizzly bars. The grate type discharge is illustrated.

The peripheral discharge type of Ball-Rod Mill is a modification of the grate type, and is recommended where a free gravity discharge is desired. It is particularly applicable when production of too many fine particles is detrimental and a quick pass through the mill is desired, and for dry grinding.

The drawings show the arrangement of the peripheral discharge. The discharge consists of openings in the shell into which bushings with holes of the desired size are inserted. On the outside of the mill, flanges are used to attach a stationary discharge hopper to prevent pulp splash or too much dust.

The mill may be operated either as a peripheral discharge or a combination or peripheral and trunnion discharge unit, depending on the desired operating conditions. If at any time the peripheral discharge is undesirable, plugs inserted into the bushings will convert the mill to a trunnion discharge type mill.

Unless otherwise specified, a hard iron liner is furnished. This liner is made of the best grade white iron and is most serviceable for the smaller size mills where large balls are not used. Hard iron liners have a much lower first cost.

Electric steel, although more expensive than hard iron, has advantage of minimum breakage and allows final wear to thinner section. Steel liners are recommended when the mills are for export or where the source of liner replacement is at a considerable distance.

Molychrome steel has longer wearing qualities and greater strength than hard iron. Breakage is not so apt to occur during shipment, and any size ball can be charged into a mill equipped with molychrome liners.

Manganese liners for Ball-Rod Mills are the world famous AMSCO Brand, and are the best obtainable. The first cost is the highest, but in most cases the cost per ton of ore ground is the lowest. These liners contain 12 to 14% manganese.

The feed and discharge trunnions are provided with cast iron or white iron throat liners. As these parts are not subjected to impact and must only withstand abrasion, alloys are not commonly used but can be supplied.

Gears for Ball-Rod Mills drives are furnished as standard on the discharge end of the mill where they are out of the way of the classifier return, scoop feeder, or original feed. Due to convertible type construction the mills can be furnished with gears on the feed end. Gear drives are available in two alternative combinations, which are:

All pinions are properly bored, key-seated, and pressed onto the steel countershaft, which is oversize and properly keyseated for the pinion and drive pulleys or sheaves. The countershaft operates on high grade, heavy duty, nickel babbitt bearings.

Any type of drive can be furnished for Ball-Rod Mills in accordance with your requirements. Belt drives are available with pulleys either plain or equipped with friction clutch. Various V- Rope combinations can also be supplied.

The most economical drive to use up to 50 H. P., is a high starting torque motor connected to the pinion shaft by means of a flat or V-Rope drive. For larger size motors the wound rotor (slip ring) is recommended due to its low current requirement in starting up the ball mill.

Should you be operating your own power plant or have D. C. current, please specify so that there will be no confusion as to motor characteristics. If switches are to be supplied, exact voltage to be used should be given.

Even though many ores require fine grinding for maximum recovery, most ores liberate a large percentage of the minerals during the first pass through the grinding unit. Thus, if the free minerals can be immediately removed from the ball mill classifier circuit, there is little chance for overgrinding.

This is actually what has happened wherever Mineral Jigs or Unit Flotation Cells have been installed in the ball mill classifier circuit. With the installation of one or both of these machines between the ball mill and classifier, as high as 70 per cent of the free gold and sulphide minerals can be immediately removed, thus reducing grinding costs and improving over-all recovery. The advantage of this method lies in the fact that heavy and usually valuable minerals, which otherwise would be ground finer because of their faster settling in the classifier and consequent return to the grinding mill, are removed from the circuit as soon as freed. This applies particularly to gold and lead ores.

Ball-Rod Mills have heavy rolled steel plate shells which are arc welded inside and outside to the steel heads or to rolled steel flanges, depending upon the type of mill. The double welding not only gives increased structural strength, but eliminates any possibility of leakage.

Where a single or double flanged shell is used, the faces are accurately machined and drilled to template to insure perfect fit and alignment with the holes in the head. These flanges are machined with male and female joints which take the shearing stresses off the bolts.

The Ball-Rod Mill Heads are oversize in section, heavily ribbed and are cast from electric furnace steel which has a strength of approximately four times that of cast iron. The head and trunnion bearings are designed to support a mill with length double its diameter. This extra strength, besides eliminating the possibility of head breakage or other structural failure (either while in transit or while in service), imparts to Ball-Rod Mills a flexibility heretofore lacking in grinding mills. Also, for instance, if you have a 5 x 5 mill, you can add another 5 shell length and thus get double the original capacity; or any length required up to a maximum of 12 total length.

On Type A mills the steel heads are double welded to the rolled steel shell. On type B and other flanged type mills the heads are machined with male and female joints to match the shell flanges, thus taking the shearing stresses from the heavy machine bolts which connect the shell flanges to the heads.

The manhole cover is protected from wear by heavy liners. An extended lip is provided for loosening the door with a crow-bar, and lifting handles are also provided. The manhole door is furnished with suitable gaskets to prevent leakage.

The mill trunnions are carried on heavy babbitt bearings which provide ample surface to insure low bearing pressure. If at any time the normal length is doubled to obtain increased capacity, these large trunnion bearings will easily support the additional load. Trunnion bearings are of the rigid type, as the perfect alignment of the trunnion surface on Ball-Rod Mills eliminates any need for the more expensive self-aligning type of bearing.

The cap on the upper half of the trunnion bearing is provided with a shroud which extends over the drip flange of the trunnion and effectively prevents the entrance of dirt or grit. The bearing has a large space for wool waste and lubricant and this is easily accessible through a large opening which is covered to prevent dirt from getting into the bearing.Ball and socket bearings can be furnished.

Scoop Feeders for Ball-Rod Mills are made in various radius sizes. Standard scoops are made of cast iron and for the 3 size a 13 or 19 feeder is supplied, for the 4 size a 30 or 36, for the 5 a 36 or 42, and for the 6 a 42 or 48 feeder. Welded steel scoop feeders can, however, be supplied in any radius.

The correct size of feeder depends upon the size of the classifier, and the smallest feeder should be used which will permit gravity flow for closed circuit grinding between classifier and the ball or rod mill. All feeders are built with a removable wearing lip which can be easily replaced and are designed to give minimum scoop wear.

A combination drum and scoop feeder can be supplied if necessary. This feeder is made of heavy steel plate and strongly welded. These drum-scoop feeders are available in the same sizes as the cast iron feeders but can be built in any radius. Scoop liners can be furnished.

The trunnions on Ball-Rod Mills are flanged and carefully machined so that scoops are held in place by large machine bolts and not cap screws or stud bolts. The feed trunnion flange is machined with a shoulder for insuring a proper fit for the feed scoop, and the weight of the scoop is carried on this shoulder so that all strain is removed from the bolts which hold the scoop.

High carbon steel rods are recommended, hot rolled, hot sawed or sheared, to a length of 2 less than actual length of mill taken inside the liners. The initial rod charge is generally a mixture ranging from 1.5 to 3 in diameter. During operation, rod make-up is generally the maximum size. The weights per lineal foot of rods of various diameters are approximately: 1.5 to 6 lbs.; 2-10.7 lbs.; 2.5-16.7 lbs.; and 3-24 lbs.

Forged from the best high carbon manganese steel, they are of the finest quality which can be produced and give long, satisfactory service. Data on ball charges for Ball-Rod Mills are listed in Table 5. Further information regarding grinding balls is included in Table 6.

Rod Mills has a very define and narrow discharge product size range. Feeding a Rod Mill finer rocks will greatly impact its tonnage while not significantly affect its discharge product sizes. The 3.5 diameter rod of a mill, can only grind so fine.

Crushers are well understood by most. Rod and Ball Mills not so much however as their size reduction actions are hidden in the tube (mill). As for Rod Mills, the image above best expresses what is going on inside. As rocks is feed into the mill, they are crushed (pinched) by the weight of its 3.5 x 16 rods at one end while the smaller particles migrate towards the discharge end and get slightly abraded (as in a Ball Mill) on the way there.

We haveSmall Ball Mills for sale coming in at very good prices. These ball mills are relatively small, bearing mounted on a steel frame. All ball mills are sold with motor, gears, steel liners and optional grinding media charge/load.

Ball Mills or Rod Mills in a complete range of sizes up to 10 diameter x20 long, offer features of operation and convertibility to meet your exactneeds. They may be used for pulverizing and either wet or dry grindingsystems. Mills are available in both light-duty and heavy-duty constructionto meet your specific requirements.

All Mills feature electric cast steel heads and heavy rolled steelplate shells. Self-aligning main trunnion bearings on large mills are sealedand internally flood-lubricated. Replaceable mill trunnions. Pinion shaftbearings are self-aligning, roller bearing type, enclosed in dust-tightcarrier. Adjustable, single-unit soleplate under trunnion and drive pinionsfor perfect, permanent gear alignment.

Ball Mills can be supplied with either ceramic or rubber linings for wet or dry grinding, for continuous or batch type operation, in sizes from 15 x 21 to 8 x 12. High density ceramic linings of uniform hardness male possible thinner linings and greater and more effective grinding volume. Mills are shipped with liners installed.

Complete laboratory testing service, mill and air classifier engineering and proven equipment make possible a single source for your complete dry-grinding mill installation. Units available with air swept design and centrifugal classifiers or with elevators and mechanical type air classifiers. All sizes and capacities of units. Laboratory-size air classifier also available.

A special purpose batch mill designed especially for grinding and mixing involving acids and corrosive materials. No corners mean easy cleaning and choice of rubber or ceramic linings make it corrosion resistant. Shape of mill and ball segregation gives preferential grinding action for grinding and mixing of pigments and catalysts. Made in 2, 3 and 4 diameter grinding drums.

Nowadays grinding mills are almost extensively used for comminution of materials ranging from 5 mm to 40 mm (3/161 5/8) down to varying product sizes. They have vast applications within different branches of industry such as for example the ore dressing, cement, lime, porcelain and chemical industries and can be designed for continuous as well as batch grinding.

Ball mills can be used for coarse grinding as described for the rod mill. They will, however, in that application produce more fines and tramp oversize and will in any case necessitate installation of effective classification.If finer grinding is wanted two or three stage grinding is advisable as for instant primary rod mill with 75100 mm (34) rods, secondary ball mill with 2540 mm(11) balls and possibly tertiary ball mill with 20 mm () balls or cylpebs.To obtain a close size distribution in the fine range the specific surface of the grinding media should be as high as possible. Thus as small balls as possible should be used in each stage.

The principal field of rod mill usage is the preparation of products in the 5 mm0.4 mm (4 mesh to 35 mesh) range. It may sometimes be recommended also for finer grinding. Within these limits a rod mill is usually superior to and more efficient than a ball mill. The basic principle for rod grinding is reduction by line contact between rods extending the full length of the mill, resulting in selective grinding carried out on the largest particle sizes. This results in a minimum production of extreme fines or slimes and more effective grinding work as compared with a ball mill. One stage rod mill grinding is therefore suitable for preparation of feed to gravimetric ore dressing methods, certain flotation processes with slime problems and magnetic cobbing. Rod mills are frequently used as primary mills to produce suitable feed to the second grinding stage. Rod mills have usually a length/diameter ratio of at least 1.4.

Tube mills are in principle to be considered as ball mills, the basic difference being that the length/diameter ratio is greater (35). They are commonly used for surface cleaning or scrubbing action and fine grinding in open circuit.

In some cases it is suitable to use screened fractions of the material as grinding media. Such mills are usually called pebble mills, but the working principle is the same as for ball mills. As the power input is approximately directly proportional to the volume weight of the grinding media, the power input for pebble mills is correspondingly smaller than for a ball mill.

A dry process requires usually dry grinding. If the feed is wet and sticky, it is often necessary to lower the moisture content below 1 %. Grinding in front of wet processes can be done wet or dry. In dry grinding the energy consumption is higher, but the wear of linings and charge is less than for wet grinding, especially when treating highly abrasive and corrosive material. When comparing the economy of wet and dry grinding, the different costs for the entire process must be considered.

An increase in the mill speed will give a directly proportional increase in mill power but there seems to be a square proportional increase in the wear. Rod mills generally operate within the range of 6075 % of critical speed in order to avoid excessive wear and tangled rods. Ball and pebble mills are usually operated at 7085 % of critical speed. For dry grinding the speed is usually somewhat lower.

The mill lining can be made of rubber or different types of steel (manganese or Ni-hard) with liner types according to the customers requirements. For special applications we can also supply porcelain, basalt and other linings.

The mill power is approximately directly proportional to the charge volume within the normal range. When calculating a mill 40 % charge volume is generally used. In pebble and ball mills quite often charge volumes close to 50 % are used. In a pebble mill the pebble consumption ranges from 315 % and the charge has to be controlled automatically to maintain uniform power consumption.

In all cases the net energy consumption per ton (kWh/ton) must be known either from previous experience or laboratory tests before mill size can be determined. The required mill net power P kW ( = ton/hX kWh/ton) is obtained from

Trunnions of S.G. iron or steel castings with machined flange and bearing seat incl. device for dismantling the bearings. For smaller mills the heads and trunnions are sometimes made in grey cast iron.

The mills can be used either for dry or wet, rod or ball grinding. By using a separate attachment the discharge end can be changed so that the mills can be used for peripheral instead of overflow discharge.

grinding circuit - an overview | sciencedirect topics

grinding circuit - an overview | sciencedirect topics

Grinding circuits are fed at a controlled rate from the stockpile or bins holding the crusher plant product. There may be a number of grinding circuits in parallel, each circuit taking a definite fraction of the feed. An example is the Highland Valley Cu/Mo plant with five parallel grinding lines (Chapter 12). Parallel mill circuits increase circuit flexibility, since individual units can be shut down or the feed rate can be changed, with a manageable effect on production. Fewer mills are, however, easier to control and capital and installation costs are lower, so the number of mills must be decided at the design stage.

The high unit capacity SAG mill/ball mill circuit is dominant today and has contributed toward substantial savings in capital and operating costs, which has in turn made many low-grade, high-tonnage operations such as copper and gold ores feasible. Future circuits may see increasing use of high pressure grinding rolls (Rosas et al., 2012).

Autogenous grinding or semi-autogenous grinding mills can be operated in open or closed circuit. However, even in open circuit, a coarse classifier such as a trommel attached to the mill, or a vibrating screen can be used. The oversize material is recycled either externally or internally. In internal recycling, the coarse material is conveyed by a reverse spiral or water jet back down the center of the trommel into the mill. External recycling can be continuous, achieved by conveyor belt, or is batch where the material is stockpiled and periodically fed back into the mill by front-end loader.

In Figure 7.35 shows the SAG mill closed with a crusher (recycle or pebble crusher). In SAG mill operation, the grinding rate passes through a minimum at a critical size (Chapter 5), which represents material too large to be broken by the steel grinding media, but has a low self-breakage rate. If the critical size material, typically 2550mm, is accumulated the mill energy efficiency will deteriorate, and the mill feed rate decreases. As a solution, additional large holes, or pebble ports (e.g., 40100mm), are cut into the mill grate, allowing coarse material to exit the mill. The crusher in closed circuit is then used to reduce the size of the critical size material and return it to the mill. As the pebble ports also allow steel balls to exit, a steel removal system (such as a guard magnet, Chapters 2 and 13Chapter 2Chapter 13) must be installed to prevent them from entering the crusher. (Because of this requirement, closing a SAG mill with a crusher is not used in magnetic iron ore grinding circuits.) This circuit configuration is common as it usually produces a significant increase in throughput and energy efficiency due to the removal of the critical size material.

An example SABC-A circuit is the Cadia Hill Gold Mine, New South Wales, Australia (Dunne et al., 2001). The project economics study indicated a single grinding line. The circuit comprises a SAG mill, 12m diameter by 6.1m length (belly inside liners, the effective grinding volume), two pebble crushers, and two ball mills in parallel closed with cyclones. The SAG mill is fitted with a 20MW gearless drive motor with bi-directional rotational capacity. (Reversing direction evens out wear on liners with symmetrical profile and prolongs operating time.) The SAG mill was designed to treat 2,065t h1 of ore at a ball charge of 8% volume, total filling of 25% volume, and an operating mill speed of 74% of critical. The mill is fitted with 80mm grates with total grate open area of 7.66m2 (Hart et al., 2001). A 4.5m diameter by 5.2m long trommel screens the discharge product at a cut size of ca. 12mm. Material less than 12mm falls into a cyclone feed sump, where it is combined with discharge from the ball mills. Oversize pebbles from the trommel are conveyed to a surge bin of 735t capacity, adjacent to the pebble crushers. Two cone crushers with a closed side set of 1216mm are used to crush the pebbles with a designed product P80 of 12mm and an expected total recycle pebble rate of 725t h1. The crushed pebbles fall directly onto the SAG mill feed belt and return to the SAG mill.

SAG mill product feeds two parallel ball mills of 6.6m11.1m (internal diameterlength), each with a 9.7MW twin pinion drive. The ball mills are operated at a ball charge volume of 3032% and 78.5% critical speed. The SAG mill trommel undersize is combined with the ball mills discharge and pumped to two parallel packs (clusters) of twelve 660mm diameter cyclones. The cyclone underflow from each line reports to a ball mill, while the cyclone overflow is directed to the flotation circuit. The designed ball milling circuit product is 80% passing 150m.

Several large tonnage copper porphyry plants in Chile use an open-circuit SAG configuration where the pebble crusher product is directed to the ball mills (SABC-B circuit). The original grinding circuit at Los Bronces is an example: the pebbles generated in the two SAG mills are crushed in a satellite pebble crushing plant, and then are conveyed to the three ball mills (Mogla and Grunwald, 2008).

Hydrocyclones have come to dominate classification when dealing with fine particle sizes in closed grinding circuits (<200m). However, recent developments in screen technology (Chapter 8) have renewed interest in using screens in grinding circuits. Screens separate on the basis of size and are not directly influenced by the density spread in the feed minerals. This can be an advantage. Screens also do not have a bypass fraction, and as Example 9.2 has shown, bypass can be quite large (over 30% in that case). Figure 9.8 shows an example of the difference in partition curve for cyclones and screens. The data is from the El Brocal concentrator in Peru with evaluations before and after the hydrocyclones were replaced with a Derrick Stack Sizer (see Chapter 8) in the grinding circuit (Dndar et al., 2014). Consistent with expectation, compared to the cyclone the screen had a sharper separation (slope of curve is higher) and little bypass. An increase in grinding circuit capacity was reported due to higher breakage rates after implementing the screen. This was attributed to the elimination of the bypass, reducing the amount of fine material sent back to the grinding mills which tends to cushion particleparticle impacts.

Circulation of material occurs in several parts of a mineral processing flowsheet, in grinding and flotation circuits, for example, as well as the crushing stage. In the present context, the circulating load (C) is the mass of coarse material returned from the screen to the crusher relative to the circuit final product (or fresh feed to the circuit), often quoted as a percentage. Figure 8.2 shows two closed circuit arrangements. Circuit (a) was considered in Chapter 6 (Example 6.1), and circuit (b) is an alternative. The symbols have the same meaning as before. The relationship of circulating load to screen efficiency for circuit (a) was derived in Example 6.1, namely (where all factors are as fractions):

The circulating load as a function of screen efficiency for the two circuits is shown in Figure 8.3. The circulating load increases with decreasing screen efficiency and as crusher product coarsens (f or r decreases), which is related to the crusher set (specifically the closed side setting, c.s.s.). For circuit (a) C also increases as the fresh feed coarsens (n decreases), which is likely coming from another crusher. In this manner, the circulating load can be related to crusher settings.

In industrial grinding process, in addition to goal of productivity maximization, other purposes of deterministic grinding circuit optimization have to satisfy the upper bound constraints on the control variables. We know that there lies a tradeoff between the throughput (TP) and the percent passing of midsize classes (MS) from the previous work of Mitra and Gopinath,2004. In deterministic optimization formulation, there are certain parameters which we will assume them as constant. But, in real life that may not be case. There are such six parameters in our industrial grinding process which are R, B, R, B are the grindability indices and grindability exponents for the rod mill (RMGI) and the ball mill (BMGI); and P, S are the sharpness indices for the primary (PCSI) and secondary cyclones (SCSI). These parameters are treated as constant in deterministic formulation. As they are going to be treated as uncertain parameters in the OUU formulation. These parameters are assumed uncertain because most of them are obtained from the regression of experimental data and thus are subject to uncertainty due to experimental and regression errors. In the next part of the section, we consider them as fuzzy numbers and solve the OUU problem by FEVM. In FEVM formulation, the uncertain parameters are considered as fuzzy numbers and the uncertain formulation is transformed into the deterministic formulation by expectation calculations for both objective function and constraints. So, the converted deterministic multi-objective optimization problem is expressed as:

Another spinning batch concentrator (Figure 10.27), it is designed principally for the recovery of free gold in grinding circuit classifier underflows where, again, a very small (<1%) mass pull to concentrate is required. The feed first flows up the sides of a cone-shaped bowl, where it stratifies according to particle density before passing over a concentrate bed fluidized from behind by back-pressure (process) water. The bed retains dense particles such as gold, and lighter gangue particles are washed over the top. Periodically the feed is stopped, the bed rinsed to remove any remaining lights and is then flushed out as the heavy product. Rinsing/flushing frequency, which is under automatic control, is determined from grade and recovery requirements.

The units come in several designs, the Semi-Batch (SB), Ultrafine (UF), and i-Con, designed for small scale and artisanal miners. The first installation was at the Blackdome Gold Mine, British Columbia, Canada, in 1986 (Nesset, 2011).

These two batch centrifugal concentrators have been widely applied in the recovery of gold, platinum, silver, mercury, and native copper; continuous versions are also operational, the Knelson Continuous Variable Discharge (CVD) and the Falcon Continuous (C) (Klein et al., 2010; Nesset, 2011).

To liberate minerals from sparsely distributed and depleting the ore bodies finer grinding than generally obtained by the conventional Rod Mill Ball Mill grinding circuits is needed. Longer grinding periods in the conventional milling processes prove too expensive mainly due to large power consumption. Stirrer mills have been tried in mineral industry with considerable success and have therefore been increasingly used. In this chapter, the theories involved in the design and operation of these mills, as established till now, are explained. Further theoretical studies and designs of the mills are still in progress for a better understanding and improved operation. Presently, the mills have been proved to be economically viable and the mineral of interest conducive to improved recovery and grade.

IMP Technologies Pty. Ltd. has recently tested a pilot-scale super fine crusher that operates on dry ore and is envisaged as a possible alternative to fine or ultra-fine grinding circuits (Kelsey and Kelly, 2014). The unit includes a rotating compression chamber and an internal gyrating mandrel (Figure 6.13). Material is fed into the compression chamber and builds until the gyratory motion of the mandrel is engaged. Axial displacement of the compression chamber and the gyratory motion of the mandrel result in fine grinding of the feed material. In one example, a feed F80 of 300m was reduced to P80 of 8m, estimated to be the equivalent to two stages of grinding. This development is the latest in a resurgence in crushing technology resulting from the competition of AG/SAG milling and the demands for increased comminution energy efficiency.

The iron oxide crystal grains in most iron ores are not evenly distributed in size. Spiral separators can therefore be used to take out the coarser iron oxide grains in the primary grinding circuit to save grinding energy and help achieve a higher iron recovery. Figure 9.14 presents a typical flow sheet for processing an oxidized ore containing about 30% Fe using a combination of spiral and SLon magnetite separators and reverse flotation. This ore is mainly composed of hematite, magnetite, and quartz, and the iron oxide crystals range in size from 0.005 to 1.0mm with an average size of about 0.05mm. The average size of the quartz crystals is approximately 0.085mm.

In the primary grinding stage of the flow sheet in Figure 9.14, the ore is first ground down to about 60% -75m and then classified into two size fractions, a coarse size fraction and a fine size fraction. The coarse size fraction is treated with spiral separators to recover part of the final iron ore concentrate. Then, drum LIMS and SLon magnetic separators are used to reject some of the coarse gangue minerals as final tailings. The magnetic products from the LIMS and SLon are sent back to the secondary ball mill for regrinding, and the milled product returns to the primary cyclone classifier.

The fine size fraction is about 90% -75m and is processed using drum LIMS separators and SLon magnetic separators in series to take out the magnetite and hematite, respectively. The magnetic products from the magnetic separators are mixed to generate the feed for reverse flotation to produce another component of the final iron ore concentrate.

The key advantage of this flow sheet lies in the fact that the spirals and SLon magnetic separators take out about 20% of the mass of the final iron concentrate and about 20% of the mass of the final tailings, respectively, from the coarse size fraction. This greatly reduces the masses being fed to the secondary ball mill and reverse flotation, thereby greatly reducing the total processing cost. From the plant results for this flow sheet, an iron concentrate containing 67.5% Fe could be produced from a run-of-mine ore containing 30.1% Fe, at a mass yield to the iron concentrate of 34.9%, an iron recovery of 78.0%, and a tailings grade of 10.2% Fe.

The first step of physical beneficiation is crushing and grinding the iron ore to its liberation size, the maximum size where individual particles of gangue are separated from the iron minerals. A flow sheet of a typical iron ore crushing and grinding circuit is shown in Figure 1.2.2 (based on Ref. [4]). This type of flow sheet is usually followed when the crude ore contains below 30% iron. The number of steps involved in crushing and grinding depends on various factors such as the hardness of the ore and the level of impurities present [5].

Jaw and gyratory crushers are used for initial size reduction to convert big rocks into small stones. This is generally followed by a cone crusher. A combination of rod mill and ball mills are then used if the ore must be ground below 325 mesh (45m). Instead of grinding the ore dry, slurry is used as feed for rod or ball mills, to avoid dusting. Oversize and undersize materials are separated using a screen; oversize material goes back for further grinding.

Typically, silica is the main gangue mineral that needs to be separated. Iron ore with high-silica content (more than about 2%) is not considered an acceptable feed for most DR processes. This is due to limitations not in the DR process itself, but the usual customer, an EAF steelmaking shop. EAFs are not designed to handle the large amounts of slag that result from using low-grade iron ores, which makes the BF a better choice in this situation. Besides silica, phosphorus, sulfur, and manganese are other impurities that are not desirable in the product and are removed from the crude ore, if economically and technically feasible.

While used sometimes on final concentrates, such as Fe concentrates, to determine the Blaine number (average particle size deduced from surface area), and on tailings for control of paste thickeners, for example, the prime application is on cyclone overflow for grinding circuit control (Kongas and Saloheimo, 2009). Control of the grinding circuit to produce the target particle size distribution for flotation (or other mineral separation process) at target throughput maximizes efficient use of the installed power.

Continuous measurement of particle size in slurries has been available since 1971, the PSM (particle size monitor) system produced then by Armco Autometrics (subsequently by Svedala and now by Thermo Gamma-Metrics) having been installed in a number of mineral processing plants (Hathaway and Guthnals, 1976).

The PSM system uses ultrasound to determine particle size. This system consists of three sections: the air eliminator, the sensor section, and the electronics section. The air eliminator draws a sample from the process stream and removes entrained air bubbles (which otherwise act as particles in the measurement). The de-aerated pulp then passes between the sensors. Measurement depends on the varying absorption of ultrasonic waves in suspensions of different particle sizes. Since solids concentration also affects the absorption, two pairs of transmitters and receivers, operating at different frequencies, are employed to measure particle size and solids concentration of the pulp, the processing of this information being performed by the electronics. The Thermo GammaMetrics PSM-400MPX (Figure 4.18) handles slurries up to 60% w/w solids and outputs five size fractions simultaneously.

Other measurement principles are now in commercial form for slurries. Direct mechanical measurement of particle size between a moving and fixed ceramic tip, and laser diffraction systems are described by Kongas and Saloheimo (2009). Two recent additions are the CYCLONEtrac systems from CiDRA Minerals Processing (Maron et al., 2014), and the OPUS ultrasonic extinction system from Sympatec (Smith et al., 2010).

CiDRAs CYCLONEtrac PST (particle size tracking) system comprises a hardened probe that penetrates into the cyclone overflow pipe to contact the stream and effectively listens to the impacts of individual particles. The output is % above (or below) a given size and has been shown to compare well with sieve sizing (Maron et al., 2014). The OPUS ultrasonic extinction system (USE) transmits ultrasonic waves through a slurry that interact with the suspended particles. The detected signal is converted into a particle size distribution, the number of frequencies used giving the number of size classes measured. Applications on ores can cover a size range from 1 to 1,000m (Smith et al., 2010).

In addition to particles size, recent developments have included sensors to detect malfunctioning cyclones. Westendorf et al. (2015) describe the use of sensors (from Portage Technologies) on cyclone overflow and underflow piping. CiDRAs CYCLONEtrac OSM (oversize monitor) is attached to the outside of the cyclone overflow pipe and detects the acoustic signal as oversize particles (rocks) hit the pipe (Cirulis and Russell, 2011). The systems are readily installed on individual cyclones thus permitting poorly operating units to be identified and changed while allowing the cyclone battery to remain in operation. Figure 4.19 shows an installation of both CiDRA systems (PST, OSM) on the overflow pipe from a cyclone.

Related News
  1. twostage flotation cell of ore in ball mill
  2. harga ball mill horisontal
  3. mineral processing ball mill images
  4. large calcite ceramic ball mill in puebla
  5. marble ball mill in malaysia
  6. system sand production line 4b
  7. cost of grinding in gold production stone crusher for sale
  8. new quartz mineral processing production line in tokyo
  9. ball bearing
  10. monrovia high quality small kaolin ceramic ball mill manufacturer
  11. jaw crusher contienen in rajasthan
  12. high end small lime stone crushing machine price in east asia
  13. ball mill rubber liner
  14. economic pyrrhotite stone crushing machine sell in sao paulo
  15. vodeos cembleling trio con crusher
  16. carbon fiber beam grinder roll
  17. dryer machine for sawdust industry
  18. rotary dryer companies
  19. mining in northern minnesota
  20. grinding mill for mining canada crusher for sale