Hello, my partner! Let's explore the mining machine together!

[email protected]

good quality ore single stage gold ore extraction equipment

ore sorting: efficiently optimise the treatment of ores in the mining industry steinert

ore sorting: efficiently optimise the treatment of ores in the mining industry steinert

There are many ways of improving recovery processes for a wide variety of ores using sorting equipment. At STEINERT we always take the same approach: sorting waste rock and ore with low concentrations out from the process at an early stage to save energy and resources and to unlock more enriched ore more effectively. With preconcentration there are customers who can double the grade of their material.

The STEINERT XSS T EVO 5.0 with dual energy x-ray transmission (XRT) is ideally suited for ore sorting because the x-ray radiation can penetrate stones with particle sizes up to 100 mm. Metals can thus be detected, even when they are not on the surface. By altering the configuration of the machine, you can select the desired minimum content yourself, and adapt this dynamically. This enables you to respond to changes in the market situation or in the input material.

In addition to XRT, we offer other sensors that can be combined with one another. Thus, XRF (x-ray fluorescence) can be used to determine and sort individual chemical elements very precisely. Optical sorting and lasers are very well suited to the detection of ores with different colours, such as copper oxide, or crystalline structures in quartz.

By using ore sorting equipment, ore concentrates can be created at very low cost in small or remote mining installations. The entire processing line can be planned in semi-mobile form and consists only of crushers, screens, belts and sorting machines. This allows immense cost savings for transport, since the waste rock is disposed of on-site. Additionally, higher prices can be achieved with the concentrate since the ore content is considerably greater.

But larger plants, with integrated recovery facilities, also profit enormously from our ore sorting technology. STEINERT ore sorting solutions complement and reduce the burden on the downstream stages of conventional processing. This greatly reduces the overall costs for process materials such as water and leaching agent, while the material recovery facility can be made smaller, because the waste rock is no longer processed.

In southern Africa, two x-ray sorters are used to pre-concentrate sulphide gold ore into two different grain size categories. While the input material has an average gold content of less than 0.8 g/t, the sorted product achieves a concentration of more than 4 g/t with an efficiency of approximately 90%.

An initial pilot system based on the STEINERT XSS T EVO 5.0 x-ray sorter ran successfully for several months and far exceeded the expected 5000 t per month. With an annual capacity 150,000 tonnes, the system replaced 150 manual sorters, and the pre-concentrated chromite provides a higher quality. The sorting machine processes material in grain sizes from 25 to 75 mm with an average CrO content of 13 to 18% and generates a product with over 38% CrO content. Further sorting machines will shortly be installed to increase production.

5 gold extraction methods to improve your recovery rate | fote machinery

5 gold extraction methods to improve your recovery rate | fote machinery

The crushing and screening stage in the industry is mainly composed of three-stage and a closed-circuit process. Gold ores need to go through coarse, medium, and fine crushing processes to be minimized into smaller pieces. The screening equipment is used to sieving the smaller gold ores into the proper size for the next steps.

The grinding operation usually adopts one or two ball mills with types of lattice and overflow. The second stage grinding operation forms a closed circuit with a spiral classifier or a hydro cyclone to ensure the grinding fineness.

Since traditional ball milling equipment appears some shortcomings such as fast wear and large energy consumption, many manufacturers adopt new wear-resisting rubber lining boards, sliding bearing to improve a mill operation efficiency and prolong a machine's service life.

The beneficiation stage is a crucial part of gold extraction during the whole gold ore processing plant. Placer gold mine and rock gold mine are most widely processed to extract gold concentration.

The gold slurry process of the carbon slurry method (CIP and CIL) is to put activated carbon into cyanide ore slurry, adsorb dissolved gold on activated carbon, and finally to extract gold from activated carbon.

Equipment required for carbon slurry gold mining process: Leaching mixing tank, activated carbon screen, Two-layer (three-layer) washing and thickening machine, fast desorption electrolysis system with high-efficiency and low-consumption, high-frequency dewatering screen.

It means that by ion exchange resin, gold also can be extracted from ore pulp. Like carbon, the process makes gold absorbed onto solid spherical polystyrene resin beads instead of activated carbon grains.

According to different physical and chemical properties of different types of gold ores, flotation separation utilizes various reagents to make the gold attached to the bubbles then scraping these gold particles from blades to get the concentrate.

A jigger is one of the main pieces of equipment in the gravity separation process. The jigging process mixes gold ore particles of different specific gravity together, then stratifying these particles. The minerals with small specific gravity will be on the upper layer while the minerals with large specific gravity will be on the lower layer.

A shaking table is used to process gold ores in the horizontal medium flow. The motor drives the surface of the shaker to perform the longitudinal reciprocating motion, as well as the differential motion of the washing stream and the surface of the bed. Gold ore particles are stratified perpendicular to the surface of the bed, then being separated parallel to the surface of the bed in reciprocating motion which allows gold ores with different particle sizes to be discharged from different parts to achieve separation.

It adopts lope water flow to achieve separation. With the effect of the combined force of water flow, mineral gravity, the friction created by the bottom of the tank, and ore particles, the gold ore particles will settle in different areas of the tank. The ore particles with small specific gravity will flow away with the water, while ore particles with larger specific gravity would stay.

Metso company is a world-leading industrial company offering equipment and services for the sustainable processing and flow of natural resources in the mining, aggregates, recycling, and process industries.

SGS Company is a multinational company headquartered in Geneva, Switzerland, providing inspection, verification, testing, and certification services. It's ranked by Forbes as one of 2017 Top Multinational Performers.

Henan Fote Heavy Machinery Co., Ltd. (FTM) has more than 40-year experience in the design of gold mining equipment processes. Its beneficiation equipment and plants sales to many countries including Tanzania, India, South Africa, the United Kingdom and other regions. According to the actual needs of customers, all machines can be customized here.

As a leading mining machinery manufacturer and exporter in China, we are always here to provide you with high quality products and better services. Welcome to contact us through one of the following ways or visit our company and factories.

Based on the high quality and complete after-sales service, our products have been exported to more than 120 countries and regions. Fote Machinery has been the choice of more than 200,000 customers.

iron ore processing,crushing,grinding plant machine desgin&for sale | prominer (shanghai) mining technology co.,ltd

iron ore processing,crushing,grinding plant machine desgin&for sale | prominer (shanghai) mining technology co.,ltd

After crushing, grinding, magnetic separation, flotation, and gravity separation, etc., iron is gradually selected from the natural iron ore. The beneficiation process should be as efficient and simple as possible, such as the development of energy-saving equipment, and the best possible results with the most suitable process. In the iron ore beneficiation factory, the equipment investment, production cost, power consumption and steel consumption of crushing and grinding operations often account for the largest proportion. Therefore, the calculation and selection of crushing and grinding equipment and the quality of operation management are to a large extent determine the economic benefits of the beneficiation factory.

There are many types of iron ore, but mainly magnetite (Fe3O4) and hematite (Fe2O3) are used for iron production because magnetite and hematite have higher content of iron and easy to be upgraded to high grade for steel factories.

Due to the deformation of the geological properties, there would be some changes of the characteristics of the raw ore and sometimes magnetite, hematite, limonite as well as other types iron ore and veins are in symbiosis form. So mineralogy study on the forms, characteristics as well as liberation size are necessary before getting into the study of beneficiation technology.

1. Magnetite ore stage grinding-magnetic separation process The stage grinding-magnetic separation process mainly utilizes the characteristics of magnetite that can be enriched under coarse grinding conditions, and at the same time, it can discharge the characteristics of single gangue, reducing the amount of grinding in the next stage. In the process of continuous development and improvement, the process adopts high-efficiency magnetic separation equipment to achieve energy saving and consumption reduction. At present, almost all magnetic separation plants in China use a large-diameter (medium 1 050 mm, medium 1 200 mm, medium 1 500 mm, etc.) permanent magnet magnetic separator to carry out the stage tailing removing process after one stage grinding. The characteristic of permanent magnet large-diameter magnetic separator is that it can effectively separate 3~0mm or 6~0mm, or even 10-0mm coarse-grained magnetite ore, and the yield of removed tails is generally 30.00%~50.00%. The grade is below 8.00%, which creates good conditions for the magnetic separation plant to save energy and increase production.

2.Magnetic separation-fine screen process Gangue conjoined bodies such as magnetite and quartz can be enriched when the particle size and magnetic properties reach a certain range. However, it is easy to form a coarse concatenated mixture in the iron concentrate, which reduces the grade of the iron concentrate. This kind of concentrate is sieved by a fine sieve with corresponding sieve holes, and high-quality iron concentrate can be obtained under the sieve.

There are two methods for gravity separation of hematite. One is coarse-grained gravity separation. The geological grade of the ore deposit is relatively high (about 50%), but the ore body is thinner or has more interlayers. The waste rock is mixed in during mining to dilute the ore. For this kind of ore, only crushing and no-grinding can be used so coarse-grained tailings are discarded through re-election to recover the geological grade.

The other one is fine-grain gravity separation, which mostly deals with the hematite with finer grain size and high magnetic content. After crushing, the ore is ground to separate the mineral monomers, and the fine-grained high-grade concentrate is obtained by gravity separation. However, since most of the weak magnetic iron ore concentrates with strong magnetic separation are not high in grade, and the unit processing capacity of the gravity separation process is relatively low, the combined process of strong magnetic separation and gravity separation is often used, that is, the strong magnetic separation process is used to discard a large amount of unqualified tailings, and then use the gravity separation process to further process the strong magnetic concentrate to improve the concentrate grade.

Due to the complexity, large-scale mixed iron ore and hematite ore adopt stage grinding or continuous grinding, coarse subdivision separation, gravity separation-weak magnetic separation-high gradient magnetic separation-anion reverse flotation process. The characteristics of such process are as follows:

(1) Coarse subdivision separation: For the coarse part, use gravity separation to take out most of the coarse-grained iron concentrate after a stage of grinding. The SLon type high gradient medium magnetic machine removes part of the tailings; the fine part uses the SLon type high gradient strong magnetic separator to further remove the tailings and mud to create good operating conditions for reverse flotation. Due to the superior performance of the SLon-type high-gradient magnetic separator, a higher recovery rate in the whole process is ensured, and the reverse flotation guarantees a higher fine-grained concentrate grade.

(2) A reasonable process for narrow-level selection is realized. In the process of mineral separation, the degree of separation of minerals is not only related to the characteristics of the mineral itself, but also to the specific surface area of the mineral particles. This effect is more prominent in the flotation process. Because in the flotation process, the minimum value of the force between the flotation agent and the mineral and the agent and the bubble is related to the specific surface area of the mineral, and the ratio of the agent to the mineral action area. This makes the factors double affecting the floatability of minerals easily causing minerals with a large specific surface area and relatively difficult to float and minerals with a small specific surface area and relatively easy to float have relatively consistent floatability, and sometimes the former has even better floatability. The realization of the narrow-level beneficiation process can prevent the occurrence of the above-mentioned phenomenon that easily leads to the chaos of the flotation process to a large extent, and improve the beneficiation efficiency.

(3) The combined application of high-gradient strong magnetic separation and anion reverse flotation process achieves the best combination of processes. At present, the weak magnetic iron ore beneficiation plants in China all adopt high-gradient strong magnetic separation-anion reverse flotation process in their technological process. This combination is particularly effective in the beneficiation of weak magnetic iron ore. For high-gradient strong magnetic separation, the effect of improving the grade of concentrate is not obvious. However, it is very effective to rely on high-gradient and strong magnetic separation to provide ideal raw materials for reverse flotation. At the same time, anion reverse flotation is affected by its own process characteristics and is particularly effective for the separation of fine-grained and relatively high-grade materials. The advantages of high-gradient strong magnetic separation and anion reverse flotation technology complement each other, and realize the delicate combination of the beneficiation process.

The key technology innovation of the integrated dry grinding and magnetic separation system is to "replace ball mill grinding with HPGR grinding", and the target is to reduce the cost of ball mill grinding and wet magnetic separation.

HPGRs orhigh-pressure grinding rollshave made broad advances into mining industries. The technology is now widely viewed as a primary milling alternative, and there are several large installations commissioned in recent years. After these developments, anHPGRsbased circuit configuration would often be the base case for certain ore types, such as very hard, abrasive ores.

The wear on a rolls surface is a function of the ores abrasivity. Increasing roll speed or pressure increases wear with a given material. Studs allowing the formation of an autogenous wear layer, edge blocks, and cheek plates. Development in these areas continues, with examples including profiling of stud hardness to minimize the bathtub effect (wear of the center of the rolls more rapidly than the outer areas), low-profile edge blocks for installation on worn tires, and improvements in both design and wear materials for cheek plates.

With Strip Surface, HPGRs improve observed downstream comminution efficiency. This is attributable to both increased fines generation, but also due to what appears to be weakening of the ore which many researchers attribute to micro-cracking.

As we tested , the average yield of 3mm-0 and 0.15mm-0 size fraction with Strip Surface was 78.3% and 46.2%, comparatively, the average yield of 3mm-0 and 0.3mm-0 with studs surface was 58.36% and 21.7%.

These intelligently engineered units are ideal for classifying coarser cuts ranging from 50 to 200 mesh. The feed material is dropped into the top of the classifier. It falls into a continuous feed curtain in front of the vanes, passing through low velocity air entering the side of the unit. The air flow direction is changed by the vanes from horizontal to angularly upward, resulting in separation and classification of the particulate. Coarse particles dropps directly to the product and fine particles are efficiently discharged through a valve beneath the unit. The micro fines are conveyed by air to a fabric filter for final recovery.

Air Magnetic Separation Cluster is a special equipment developed for dry magnetic separation of fine size (-3mm) and micro fine size(-0.1mm) magnetite. The air magnetic separation system can be combined according to the characteristic of magnetic minerals to achieve effective recovery of magnetite.

After rough grinding, adopt appropriate separation method, discard part of tailings and sort out part of qualified concentrate, and re-grind and re-separate the middling, is called stage grinding and stage separation process.

According to the characteristics of the raw ore, the use of stage grinding and stage separation technology is an effective measure for energy conservation in iron ore concentrators. At the coarser one-stage grinding fineness, high-efficiency beneficiation equipment is used to advance the tailings, which greatly reduces the processing volume of the second-stage grinding.

If the crystal grain size is relatively coarse, the stage grinding, stage magnetic separation-fine sieve self-circulation process is adopted. Generally, the product on the fine sieve is given to the second stage grinding and re-grinding. The process flow is relatively simple.

If the crystal grain size is too fine, the process of stage grinding, stage magnetic separation and fine sieve regrind is adopted. This process is the third stage of grinding and fine grinding after the products on the first and second stages of fine sieve are concentrated and magnetically separated. Then it is processed by magnetic separation and fine sieve, the process is relatively complicated.

At present, the operation of magnetic separation (including weak magnetic separation and strong magnetic separation) is one of the effective means of throwing tails in advance; anion reverse flotation and cation reverse flotation are one of the effective means to improve the grade of iron ore.

In particular, in the process of beneficiation, both of them basically take the selected feed minerals containing less gangue minerals as the sorting object, and both use the biggest difference in mineral selectivity, which makes the two in the whole process both play a good role in the process.

Based on the iron ore processing experience and necessary processing tests, Prominer can supply complete processing plant combined with various processing technologies, such as gravity separation, magnetic separation, flotation, etc., to improve the grade of TFe of the concentrate and get the best yield. Magnetic separation is commonly used for magnetite. Gravity separation is commonly used for hematite. Flotation is mainly used to process limonite and other kinds of iron ores

Through detailed mineralogy study and lab processing test, a most suitable processing plant parameters will be acquired. Based on those parameters Prominer can design a processing plant for mine owners and supply EPC services till the plant operating.

Prominer has been devoted to mineral processing industry for decades and specializes in mineral upgrading and deep processing. With expertise in the fields of mineral project development, mining, test study, engineering, technological processing.

Related News
  1. stone crusher gang jamaica 2019
  2. dove gold mining machinery
  3. crusher equipment professional
  4. rock crushing equipment equipment sale
  5. rock crusher lift
  6. pe china mining jaw crusher equipment
  7. south african mining equipment suppliers mining equipment manufacturers
  8. quartz mining quarry
  9. fuel consumption of mining equipment
  10. pre independence german gold mining in kenya
  11. rolling mill for sale in italy
  12. ondorhaan economic barite system sand production line
  13. mining detection equipments in iron ore
  14. cement mill test report
  15. step by step diagram of coal mining
  16. mini jaw crusher for laboratory price
  17. place where stone crushing is done
  18. coke breeze briquetting press machine in south africa
  19. cement conveyor belt sale in malaysia
  20. pokhara high quality environmental coal ceramic ball mill price