Hello, my partner! Let's explore the mining machine together!

[email protected]

milling production line numbers

thrilling milling | article | automotive manufacturing solutions

thrilling milling | article | automotive manufacturing solutions

Todays automotive manufacturing engineers appear to favour flexible manufacturing systems (FMS) or cells, as opposed to dedicated transfer lines. Typically, this is because todays vehicle models have a shorter production life than those of yesteryear as OEMs constantly evolve their designs to try and grow market share.

To ensure an FMS is as efficient and productive as possible, investment in the latest CNC machining centre technology is a prerequisite. A case in point is reported by Starrag UK, which says it has supplied another Heckert horizontal HEC 400D machining centre to the same top-tier supplier the 14th machine onsite to expand a manufacturing cell that produces a range of steel and aluminium suspension components.

According to Starrag, these four-axis machining centres are being used throughout the automotive sector by OEMs and their top-tier suppliers for the single set-up machining of workpieces such as gearboxes, coupling housings and valve bodies, and are proving effective when used in cellular or FMS configuration.

Taking a modular approachOver at German machine tool builder Heller, the school of thought extends to machine tool modularity, particularly for systems producing parts such as cylinder blocks and heads, crankshafts and camshafts, transmission and chassis components. To be able to cover such a broad range of vehicle applications, from a small two-cylinder motorcycle engine to a V12 construction machine engine, Heller opts for scalable production systems.

According to the German Automotive Association (VDA), some 78.7m passenger cars were produced worldwide in 2015, 1.7% more than the year before. In Germany alone, 5.7m vehicles rolled off the production line an increase of almost 2%. The countrys car makers are being driven by increasingly shorter innovation cycles and growing model and variant diversity.

Manfred Maier, managing director and COO of the Heller Group explains what this means for machine tool manufacturers as suppliers to car builders: For many companies in the automotive industry today, maximum flexibility comes before maximum productivity with the smallest possible investment. The implementation time between the investment decision and start of production is also becoming increasingly important.

This concept is realised with four- and five-axis modules featuring direct loading, as well as custom-made and process machines that can be interlinked at any point in time to create a fully automated manufacturing platform.

Greater complexity, less volumeThe challenges for machining are increasingly smaller batch sizes, more complex components and the integration of innovative technologies to achieve complete machining operations.

During the course of the collaboration, we not only focus on designing the machine technology and machining processes, but we also provide assistance and support for optimising the part for production, specifically with regard to material flow, workpiece clamping design, optimum handling between the machining steps and the selection of process-optimised tools. Depending on requirements, we also deliver various automation solutions.

A specific project example is a production system for the Fiat plant in the Polish city of Bielsko-Biala. Over 1,000 two-cylinder engines roll off the production line here every day. The solution comprises three Heller MCi 25.1 machining centres, 40 MC10 machining modules with direct loading, six MCH 250 machining centres, one automated loader, statistical process control, a NOK conveyor for loading and unloading defective parts, as well as an automated parts handling facility between the individual stations.

As Fiat prefers cast iron rather than the current standard light alloy engines for its engine block (for reasons of strength), the intricate structure of the component presents a challenge. In addition to the prominent cylinder bores, the part is littered with flange surfaces, cooling channels and holes all in the smallest spaces. However, some 450,000 two-cylinder engine housings are milled from G25 GH190B cast iron every year at Bielsko-Biala with a cycle time of under 40 seconds each.

We were Fiat's key development partner for designing the production of its TwinAir engine, emphasises Roth. And when truck manufacturer MAN was looking for a partner with adequate experience in the development of diesel engines and the machining of GGV compacted graphite iron for the housing, Heller responded in the same way (despite the difference in scale): four- and five-axis machining modules with direct loading, as well as special-purpose and process machines.

Right-sizing machining solutionsWe will not develop a proprietary machine for every task. Instead, we will make use of a modular system, explains Roth. Such a machine must be designed for series production, and must be adaptable to customer requirements. In a nutshell, we talk about right-sizing. This means that the customer gets a production solution that matches their specific application.

So, what happens when series production is not quite the volume normally associated with automotive contracts? Well, it appears the solution is rather similar, as highlighted at UK-based Grainger & Worrall (GW), a provider of machined engine castings to high-performance manufacturers including Porsche, Aston Martin, Bugatti and McLaren.

Designed specifically for high-end automotive components, such as body-in-white structures and powertrain parts, the FMS houses three Mazak Variaxis i-600 five-axis machining centres. GW says that this enhanced manufacturing capability enables shorter turnaround times and lower inventories, which are required by low-volume vehicle manufacturers.

The Variaxis i-600 is a fully simultaneous five-axis vertical machining centre that performs multiple and complex curved surface machining on small and medium-sized workpieces in single set-ups. The machine falls within Mazak's Done in One concept by incorporating all processes from raw material input through to final machining on a single machine platform.

The machine also offers high levels of productivity via 12,000 rpm, high-rigidity spindles that are said to handle applications from heavy-duty cutting to high-speed machining of aluminium and other non-ferrous materials. An optional two-pallet changer provides continuous machine operation and integration within a Palletech manufacturing system for automated manufacturing, as is the case at GW.

The 20-pallet system allows fixtures to remain set, so that feeding the three i-600 five-axis machining centres is both efficient and repeatable, says Edward Grainger, director at GW. This solution offers good flexibility to cater for changing demands while giving total process control, good levels of reliability and high part accuracy.

The FMS at GW forms part of a recently opened 5m machining facility. The 33,000 sq.ft, temperature-controlled machining facility includes seven vertical, two five-axis and six horizontal machining centres. Shortly before its official opening, Aston Martin confirmed GW as its preferred partner to produce aluminium engine blocks and heads for the DB11.

Based near Turin, Italy, privately owned specialist-engineering company, Chiaro Macchine Speciali, is well located to serve established automotive tier suppliers such as Magneti Marelli and Webasto. In fact, 80% of the companys engineered products, test systems, and tooling used in manufacturing processes and on production lines are supplied to the European and global automotive sector. Andrea Beltramo and his colleague, Khalid Mahmood, are the Chiaro engineers responsible for the companys Haas CNC machine tools, among which is a recently installed VM-6. We bought the machine because we wanted a large, solid machine for milling operations, says Mahmood.

Furthermore, its precise and versatile. We dont make parts in large numbers; most of the test systems and machines we build are one-offs, but we do need versatility. The machines table, with its X and Y T-slots, gives us the ability to quickly and easily mount parts of different sizes and shapes. We do all our planning and design in-house, adds Beltramo, so its important for speed and quality control that we can make our own parts, test them, and make changes as quickly and efficiently as possible.

A typical Chiaro test system could be, for example, one designed to check fabricated automotive exhausts before they are fitted to vehicles on the production line. Weve just designed and built a fully automated machine that allows our customer to check the silencer of an exhaust system for leaks, says Beltramo. It will be located beside a production line, so it has to be designed to minimise the possibility of set-up errors and, importantly, has to accommodate a variety of different model variations without any trouble or delays. Before the Haas VM-6 arrived, we already had a Haas TM-2 milling machine, which we use for small, one-off parts, he continues.

So, we already knew the Haas control, which meant we were able to start working the new machine without the need for much additional instruction. We did a very short course, and that was it! Were happy with the VM-6, concludes Mahmood, and I know the company owner is, too. We got the machine we needed to be able to improve the way we make parts in-house. It has made a significant difference.

CAM software developer Open Mind Technologies says it worked with Volkswagens Braunschweig plant in Germany to develop a new milling cycle for the programming of rib geometries. One of the plants functions is the manufacture of moulds for cylinder heads and chassis, die cast moulds for gearboxes, coupling housings and steering boxes, as well as injection moulds for bumpers and instrument panels. The cooling ribs of gearboxes have very deep cavities that entail major risk and are extremely time consuming in terms of programming and milling.

With this in mind, a specialist in-house knowledge management group made up of planning engineers, programmers and machine operators was put together to optimise the machining of ribs from die cast components. Rib types were classified and corresponding programming processes developed. On this basis, the programming approach could be standardised and the tool database adjusted accordingly. The rib milling knowledge management group developed a test part that featured all of the known degrees of difficulty, such as nesting, deep cavities, rib intersections, radial ribs and interference contours.

Based on this specification, Open Mind has subsequently developed a rib milling cycle that introduces a lot of innovations to the machining sequence, such as: an integrated roughing/ finishing function; integrated pocket machining of wide ribs; automatic collision detection of the toolholder (taking conical milling tools into account); and integrated bottom machining. The fact that the infeed parameters always come directly from the tool database, even in the case of automatically separated areas, is said to be a particular highlight. In the case of components with a very high degree of ribbing, the new approach has made it possible to significantly reduce processing times at the machine. In fact, the new rib milling cycle cut pure programming time in half.

Further to the reductions in programming and machining times, we are also achieving greater process reliability and considerably reduced tool wear, says Wolfgang Sofftner, contact partner for 3D machining in component tool engineering at Volkswagens Braunschweig plant. The approach involves the inspection of components by knowledge management and the subsequent development of standardised machining options, and is pioneering for future projects.

The QT-PRIMOS 50 SG is a compact, CNC turning centre, designed for mass production environments, says Mazak. It features a rigid integral spindle motor and intelligent thermal shield that its claimed provides accuracy and high-speed cutting, with the main spindle capable of 5,000rpm. Other compact models include the QT-PRIMOS ...

Steed Webzell looks at edge computing and the hardware requirements for those looking to digitally monitor, measure or control their machining operations Certain terms surrounding digitisation have become pretty familiar over the past 5-10 years: Internet of Things, Industry 4.0 (I4.0), edge computing, big data, smart factory, artificial intelligence ...

how does a flour mill process line produce flour?

how does a flour mill process line produce flour?

We have been talk about all kinds of flour mill machines for many times. Today, we are going to discuss about flour milling process. Of course, flour mills are used to turn grain into flour, lets see how to turn wheat into flour. in order to get high quality flour mill in the shortest time. There are some rules you must follow. Wheat is the most common material that used in flour milling.

The first stage is complete wash the wheat or other grain. Because foreign material like little rocks.stones, seed or other material. If the wheat is not clean, it may cause damage to the flour mill machine. Then the washed product is passed through an aspirator to suck clean any substance that is less in weight than the wheat grain and could have escaped the first cleaning stage.

In flour mills production process great precautions are taken to ensure that best flour grade is produced. Every process is conducted by qualified team who ensures that high levels of hygienic measures are taken.

Nowadays, KEMC is getting more and more popular among flour mill runners. The number of flour mill machines that KEMC expert is increasing year by year. The number of countries that we have connection is also increasing these years. Which means more and more people are choosing KEMC as their flour mill supplier. KEMChasgained a remarkable reputation over time for stocking and selling flour mills from KMEC for commercial production of different types of flours from wheat, maize, rice, sorghum and so forth.If you do not know KEMC at all, you can visit our website after reading this passage.

There are a lot of factors that you should take into consideration while choosing a flour mill machine supplier, the most common factors are quality,price, delivery and after sale service. KMEC is the perfect that anyone after a satisfying flourmill will check out. KEMC may can not supply you the cheapest price in the market, we can guarantee the quality of our flour mill machine and thoughtful after sale service. The quality of their products have won the hearts of many users since they came to the industry a number of decades ago, oftentimes, resulting to referral sales.

If you do not trust our company or you want to order more machine but can not see the machine youself. Do not worry, we can arrange you to come to visit us. You can see the real set that produce flour mill machines. Seeing is believing. Good products never afraid of testing. We will send our staff to accompany you. With decades years dedicating in flour mill design and installation. We have already grain so much experience and accumulated some long term cooperation partners. With these manufacturers, any user will find the ultimate machine for the intended application, without worrying about formidable costs. The cost of installation is also very reasonable.

The flexibility of the products of the KMEC flour mill manufacturers is something that the user will find very comfortable. With so many flour-milling recipes to experiment with using a single flour- mill, the process is one time, whatever the type of flour intended.

tube mill machine | rolling mill machine | lotos 2020

tube mill machine | rolling mill machine | lotos 2020

Tube Mill Machine | Rolling mill machine | LOTOS 2O19 is a new welding technology, which coats thin stainless steel on the surface of carbon steel pipe with high strength, the product has the features of both artistic appearance, therefore, corrosion resistance of stainless steel and high strength of carbon steel. It is the best substitute for stainless steel pipe as its lower price compared with that of welded steel pipe.

Choose us, you do not only get the tube Mill Line from us, but you also get technology from us. We select the best welding method for customers from high-frequency welding, TIG welding, plasma welding, and laser welding depending on the usage, welding requirements, and production efficiency.

The tube mill is widely used in household commodities, shoe racks, public facilities, and guardrails such as all kinds of clothes racks, retractable poles, article racks, all-purpose combination racks, table, and chair legs, indoor handrails, ship and bus racks, and outdoor guardrails.

Firstly, the stainless steel strips are made to go through various quality checks and are trimmed at the edges. The strips pass through the number of rollers as per the required size. In the tube mill, the strip is gradually converted into a tubular shape. The fitted welding machine is then used to weld trim edges of the strip welding process. In this way, rolled pipes and tubes are formed.

The rolled stainless steel pipes thus manufactured are cut to the required lengths depending upon the industrial demand. These stainless pipes and tubes are then subjected to cleaning to remove the dirt. Further, a heat treatment is given to these rolled pipes and tubes to remove the stresses that may occur due to welding and formation processes. Heat treatment is given on the continuously rolling hearth furnace. The furnace is fitted with temperature recorders and controllers. After the heat treatment process, the stainless steel tubes and pipes are straightened and subjected to pickling for removing scales from the surface.

In some cases, the required size may not be obtained from the mill directly. Then, the cold operation process can be used to obtain the desired size. In the cold drawing process, the tubes or pipes are coated with oxalic and soap solution. This solution acts as a lubricant to reduce friction while cold drawing operation.

The drawn-out tube or stainless steel pipe is then subjected to cleaning, heat treatment, pickling, and straightening. The computerized inkjet marking machine is used to do the marking on the finished pipes or tubes.

Raw material (steel coil) uncoiling shearing and butt-welding material accumulating non-power leveling mill-forming high-frequency welding removing burrs outside of weld seam Zinc spraying cooling sizing roughly straightening fixed-length cutting run-out table

Sizing device: Mainly fine shaping pipe after welding and controlling size accuracy. Every 6 sets of the horizontal roll stand, vertical roll stand and drive gearbox, 12 sets of a universal shaft.(structure same as forming device)

Related News
  1. gold mine grinding ball mill
  2. 2 ton gold grinding ball mill machine price for sa
  3. recommendations for ball milling aluminium flake powder
  4. how to make a soda can ball mill
  5. ciramic ball mill eriya of 40 tan
  6. ball mill efficiency formula
  7. cost of grinding in gold production stone crusher for sale
  8. new quartz mineral processing production line in tokyo
  9. ball bearing
  10. monrovia high quality small kaolin ceramic ball mill manufacturer
  11. impact crusher undertale
  12. breaking machine quarry crusher
  13. valparaíso high quality portable rock stone crushing machine manufacturer
  14. crusher concrete demolition
  15. iron ore processing line sea iron concentrate line magnetic
  16. jaw crushers cheek plate designs
  17. classifier u
  18. zinc ore dewatering screen successful cases
  19. harga mesin crusherb2b
  20. making coal crusher