Hello, my partner! Let's explore the mining machine together!

[email protected]

symons cone crusher 67

symons cone crusher

symons cone crusher

For finer crushing or reduction a Symonscone crusher the norm. Symons are commonly used for secondary, tertiary or quaternary crushing. They do this by a different chamber design which is flatter and by operating at about twice the rotational speed of a primary type gyratory crusher.

One of the first cone crushers had a direct drive vertical motor mounted above the spider with the drive shaft passing through the hollow bored main shaft. With relatively high speeds of 480 to 580 rpm and small eccentric throw, the machine produced a uniform produce with minimum fines.There are numerous Symonscone crusher manufacturers of modern crushers each promoting some unique aspect.

The Allis Chalmers Hydrocone selling point is its adjustability and tramp protection through a hydraulic support system for the headcentre. By merely adjusting the oil reservoir below the head centre the crusher setting can be changed while in full operation. Tramp metal causes a surge of pressure in this hydraulic system which is absorbed through relief valves and gas-bladder-filled accumulator bottles which allow the headcentre to momentarily drop and return to its normal operating position when the tramp has fallen through.

The Symons or Rexnord spring cone crusher is adjusted by spinning the bowl up or down manually or through hydraulic rams. A series of powerful springs give the necessary tramp protection. Several other manufacturers produce similar types and sizes of crushers but all follow the basic types described.

When the Symons brothers Invented the cone crusher, they employed the principle wherein the length of the crushing stroke was related to the free fall of material by gravity. This permitted the material being crushed to fall vertically in the crushing chamber; and in effect, caused the particles to be crushed in a series of steps or stages as the particles got smaller due to the crushing action. This also helps to reduce the rate of wear of the liners since the sliding motion of the particles is minimized.

Recognizing that the Symons principle of crushing is the most efficient means of ore and aggregate reduction in hard rock applications, the engineers used this same principle in the design on the hydrocone.

Versatility in the form of having the ability to perform in a wide range of applications without the need for a change in major assemblies was another objective in the design. Ease of maintenance and remote setting capability also were part of the design parameters the market requires.

There is no startling revelation to the fact that the mining industry as a whole is generally moving toward the use of larger equipment to process ores in quantities far greater than what was even considered a decade ago. Trucks and shovels have led the way in extra large machines and many other manufacturers have followed suit in the development of so-called supers in their line of equipment.

In order to keep pace with the industry, crusher manufacturers have also enlarged the size of their equipment. There is now on the market, a Gyratory crusher capable of accepting a 72 diameter piece of ore. Primary jaw crushers have also increased in size. It is inevitable, therefore, that larger secondary cone crushers would also be required to complement the other equipment used to process these large quantities of ore. This super-size secondary cone crusher is the SYMONS 10 Ft. Cone Crusher.

Until 1973, the largest cone crusher built was the 7 Ft. Extra Heavy Duty crusher, which is currently used in the majority of the mining operations throughout the world. The 10 Ft. crusher, when compared to the 7 Ft. Extra Heavy Duty Crusher, is approximately 1 times larger in physical dimensions; three times heavier; will accept a maximum feed size which is approximately twice as large; and will crush at approximately 2 times the rate of the 7 Ft. machine at identical closed side settings. It will be the largest cone crusher built in the world.

The conclusions of this investigation were all positive the crusher could be built and at a cost that would be in line with its size and capacity and also with other size crushers. After that preliminary study, the project became dormant for several years.

The project was reactivated and this time general assembly drawings were made which incorporated many improvements in the crusher such as pneumatic cylinders in place of the conventional, springs for tramp iron release, a two-piece main frame a dynamically balanced design of the internal moving parts of the crusher, and an automatic clearing and adjusting mechanism for the crusher. At this stage of development we felt we were ready to build a 10 Ft. crusher for any mine that was willing to try one. Unfortunately, the conservative posture of the mining industry did not exactly coincide with our sales plans. This, added to the popularity of the autogenous mill concept at the time, led to another lull in the 10 Ft. development program.

The project was reactivated again in 1970, this time primarily at the request of one of the large Minnesota Iron Range mining companies. We then undertook a comprehensive market research study to determine if there was a need for this size crusher by the mining industry in general, rather than just the iron ore industry. We talked not only to the iron ore people but to the copper people and persons connected with the other metallic ores as well. The acceptability of this large crusher was also discussed with the aggregate industry. After interviews with many of the major mining companies, the decision was made to complete the entire engineering phase of the development program and to actively solicit a customer for this new crusher. We spent approximately $85,000 on engineering work and tests on the gamble that we could find a customer. I speak of a gamble because during our market research study we continually were told my company would be very interested in buying a 10 Ft. crusher, but only after we have seen one in operation.

The actual building and test of the first prototype unit without a firm commitment for a sale was an economic impossibility. We were now at the point where we needed to sell at least one unit in order to prove not only the mechanical reliability of the machine, but the economic justification for its purchase as well. Needless to say, when the order for two SYMONS 10 Ft. cone crushers was received, we felt we were now on the way toward completion of the development program.

Perhaps at this point it might be apropos to examine the crusher itself. It will stand 15-6 above its foundation, the overall height will be 19-4-. At its greatest diameter, in the area of the adjustment ring, it will be approximately 17-6. It will weigh approximately 550,000 lbs. Under normal crushing conditions, the crusher will be connected to a 700 HP motor. A 50 ton. overhead crane is required to perform routine maintenance on this crusher.

The main shaft assembly will weigh approximately 92,000 lbs. and the bowl assembly approximately 95,000 lbs. The mantle and bowl liner, cast from manganese steel, will weigh approximately 13,000 lbs. and 25,000 lbs. respectively.

The throughput capacity of the Standard will be approximately 1300 TPH at a 1 closed side setting and 3000 TPH at a 2- closed side setting. The throughput capacity of the SHORT HEAD will be approximately 800 TPH at closed side setting and 1450 TPH at a 9/16 closed side setting.

Persons familiar with the design of a conventional 7 Ft. SYMONS cone crusher will recognize that the design of the 10 Ft. is quite similar to it. As a matter of fact, we like to say that the design of the 10 Ft. is evolutionary rather than revolutionary, because all the reliable features of the SYMONS cone crusher were retained and the only changes that were made were those that added to the convenience of the operator, such as automatic clearing and automatic adjustment. From a mechanical point of view the stresses generated due to crushing loads are less in the 10 Ft. crusher than in the existing 7 Ft. Extra Heavy Duty cone.

One of our senior engineers who has long since retired told me that he had the occasion many years ago to make a presentation of a newly designed crusher to a prospective customer. He carefully prepared a rather detailed description of the crusher which included all the features that his new machine had when compared to the customers existing machine. The presentation itself took about one hour and after that period the customer leaned back in his chair and said, Thats all well and good, but will it crush rock? In effect, the customer was; saying that all the features in the world were of no use to him if the crusher did not perform its basic function to crush rock and ultimately make profits for the owner. Using todays financial terminology he was asking the engineer to economically cost justify the purchase of the crusher.

The working day of the contemporary manager or project engineer evolves around making decisions to economically justify a piece of equipment or a new operation. In our development program of the 10 Ft. cone crusher, we felt that the economic justification, from the customers point of view, was just as important to develop as the engineering aspects of the program. So we developed a three-part program to examine the economics of installing a 10 Ft. crusher. First we talked in wide generalities concerning the use of a 10 Ft. crusher. Secondly, we discussed the ramifications of using a 10 Ft. crusher versus 7 Ft. crushers in a completely new plant being considered for the future. Thirdly, we examined how a 10 Ft. crusher could be used to its best advantage in a plant that is being expanded.

The first consideration was the economic generalities of installing the crusher, or more specifically, what questions regarding the installation are pertinent to every crushing plant. Usually, the initial comparison which is made between a 7 Ft. crusher and a 10 Ft. crusher is that of price versus capacity. Theoretically, the capacity of a 10 Ft. crusher is 2 times that of a 7 Ft. while the selling price is approximately 3 times that of the 7 Ft. On that basis alone, it would appear that the 10 Ft. could not be justified. However, this is an incomplete picture. Recent cost estimates show that considerable savings are realized when the entire physical plant structure is considered. Because fewer machines are required to crush an equivalent amount of ore, the size of the buildings can be reduced, thereby decreasing the capital investment of buildings and allied equipment used as auxiliaries for the crusher.

Total manpower requirements to operate and maintain the plant is another of the generalities which were considered. Fewer crushers normally require less personnel to operate and perform maintenance, Manpower requirements obviously play a large part in the profitability of a plant. Therefore, it follows that using a 10 Ft. in place of multiple 7 Ft. units should be more profitable from the standpoint of manpower. We should, however, clarify one point regarding normal maintenance of the 10 Ft. crusher which is commonly misunderstood; namely, the periodic changeout of manganese liners in the crusher. The normal time period between manganese changes would not be significantly different between the 7 Ft. and a 10 Ft. because the wear rate, that is, the pounds of liner worn away per ton of ore crushed, will remain the same. Consequently, if a set of liners in a 7 Ft. crusher, lasted six weeks, a 10 Ft. crusher in the same operation would also last approximately six weeks. However, since the total amount of ore crushed will be greater, the maintenance costs per liner changeout will be less on the 10 Ft. crusher.

Another point for consideration is that the 10 Ft., cone crusher is a secondary crusher and normally would be fed with the product of a gyratory crusher. Since the 10 Ft. can accept a larger feed than a 7 Ft. crusher, it is possible to increase the open side setting of a gyratory crusher, thereby, allowing a greater volume of feed to pass through the crusher. Because of this, it is conceivable that a smaller primary crusher could be used in order to obtain a given quantity of ore.

A good salesman could expound on a multitude of ideas for using 10 Ft. crushers in place of 7 Ft. crushers in a new plant, but in the final analysis, the deciding factor as to whether or not the 10 Ft. crushers should be used will be the anticipated over-all plant capacity. Several studies have indicated that as a general rule of thumb the break even point for using 10 Ft. crushers in place of 7 Ft. crushers is a plant which will have an overall ore treatment capacity of approximately 40,000 TPD or approximately 8,000,000 TPY. Anything less than that figure should indicate the use of conventional 7 Ft. crushers. Obviously a small four stage crushing plant in which the third stage crusher was a 7 Ft. Standard and the fourth stage consisted of two 7 Ft. SHORT HEAD cone crushers, would not improve economically by the use of one 10 Ft. Standard cone crusher and one 10 Ft. SHORT HEAD cone crusher in place of the 7 Ft. crushers.

A study was made which considered a plant to be built using three different approaches of a conventional crushing-grinding operation. The plant which was being considered would be crushing taconite similar to that found in the Iron Range. The end product of the crushing was 5/8 rod mill feed and in this example the plant capacity was to be approximately 13.5 million TPY of ore processed to eventually produce approximately 4 million TPY of iron ore pellets. The study arbitrarily chose a four-year period of operation so that operating costs would be included and also because a four-year period is the usual comparison basis for calculating return on investment. In this example the primary crusher as well as the fine crushing plant would be operated fourteen shifts per week.

In our economic analysis of the 10 Ft. crusher development program, we also studied how this crusher could be used to best advantage when planning expansion of an existing plant. Before delving into the actual dollars and cents of several variations of expansion plans, several preliminary questions must be answered in the affirmative:

Since each plant is unique, the relative merits of the 10 Ft. crusher must be examined on an individual plant basis. Again, as a general rule of thumb, it has been found that the most benefit can be achieved in those plants which presently contain a four-stage crushing plant in which the first two stages of crushing are gyratory crushers. Studies have shown that converting the second stage gyratory crusher to a 10 Ft. Standard crusher shows most potential because the major auxiliaries required for the crusher, such as crane, conveyors, etc., are already large enough to accommodate the increased capacity of the 10 Ft.

As one possible solution, we suggested that the two 30 x 70 secondary gyratory crushers be replaced by two 10 Ft. Standard cones. These crushers could then send approximately 3600 TPH of minus 3 material to the fine crushing plant. The two existing 7 Ft. Standard crushers could be converted easily to SHORT HEAD crushers and two new 7 Ft. SHORT HEAD crushers added to the existing vacant foundations.

In Summary, we feel that the Symons cone crusher has a very definite place in the future of the mining industry and we intend to move steadily ahead with its progress. However, we have learned a few lessons along the way.

Initially, the development of these super size machines is an extremely expensive proposition. We know that if our company alone, attempted to completely design, manufacture, erect, and test a machine in this size range, it would severely tax our financial resources.

We found that super size equipment also presents some problems for our manufacturing facilities. The manufacture of one of these units puts a large dent into the production schedule of many of the smaller conventional units. In our enthusiasm to build a bigger newer machine, we continually remind ourselves that the smaller conventional units are still our bread and butter units.

On the positive side, we found that our reputation as a crusher manufacturer was enhanced because of what our customers refer to as progressive thinking. We listened to the suggestions of the mining industry in attempting to give them what they wanted.

Perhaps you will allow me to close with a bit of philosophizing from a manufacturers point of view. The 10 Ft. crusher is here ready to go into operation. Where do we go from here? A 15 Ft. cone crusher? A 20 Ft. cone crusher? Who knows? We do know that we have reached the financial limit of a development program on a machine of this size. We also know that as the size of a machine grows larger, the developmental and manufacturing risks grow larger along with it and any allowable margin for error must be minimized. We, like you, are in business to make a profit. Since larger crushers usually mean a fewer number of crushers, we must examine the profit picture from aspects of the sale. I think I speak for other manufacturers as well when I say that bigness in machines reflects bigness in development costs as well. If the mining industry wants still larger equipment in the future, the industry should prepare itself to contribute to the development program of those machines.

A multi-cylinderHydraulic Cone Crusher, theHydrocone Cone Crushercan be used in either the second or third stage of crushing by merely changing liners and adaptors.It can produce the full product range that the combination of a comparable sized Standard and Short Head can produce. It makes the machine much more versatile. It allows for much more standardization. The value of this feature is one where spare parts investment in the form of major assemblies is minimized.

All operator controls are conveniently mounted on a remote control console to eliminate the need for an operator to approach the crusher during operation.Over a period of years we have developed a unique engineering knowledge about the effects of cone crusher design parameters such as speed, throw and cavity design on crusher productivity.

Each Hydrocone Cone Crusher features dual function hydraulic cylinders that provide overload protection and a safe and fast way to clear a jammed cavity. Should the crusher become plugged, the operator merely pushes levers on the remote control console to clear the cavity.

It can produce the full product range that the combination of a comparable sized Standard and Short Head can produce. It makes the machine much more versatile. It allows for much more standardization. The value of this feature is one where spare parts investment in the form of major assemblies is minimized.

All operator controls are conveniently mounted on a remote control console to eliminate the need for an operator to approach the crusher during operation.Over a period of years we have developed a unique engineering knowledge about the effects of cone crusher design parameters such as speed, throw and cavity design on crusher productivity.

Each Hydrocone Cone Crusher features dual function hydraulic cylinders that provide overload protection and a safe and fast way to clear a jammed cavity. Should the crusher become plugged, the operator merely pushes levers on the remote control console to clear the cavity.

TheHydraulic Cone Crusheruses hydraulic tramp release cylinders and accumulators to hold the adjustment ring against the main frame seat. There is only one angular surface between the main frame and the adjustment ring which also has a radial contact point in the lowermost area. When a piece of tramp goes through the crusher, the oil is forced into the accumulators allowing the adjustment ring to raise and pass the tramp.

The tramp release cylinders are secured to the adjustment ring and the lower portion of the main frame through clevises. This allows the crushing forces to be transferred directly from the frame arm locations to the adjustment ring. This relieves the main frame shell and upper flange from carrying heavy loads.

The Hydraulic Cone Crusher is equipped with hydraulic clearing. The tramp release cylinders which hold the adjustment ring in place are double acting cylinders. These cylinders can be pressurized in the opposite direction, after the clamping pressure has been released, to raise the adjustment ring and bowl assembly for clearing; only the weight of the adjustment ring, clamp ring, and bowl assembly, plus any residual material in the bowl hopper raises.

replacing the symons 7 cone crusher with more productive solution - metso

replacing the symons 7 cone crusher with more productive solution - metso

There are thousands of Symons 7 crushers and units with similar technology working all over the world. As there are more effective technologies available, Metso has solutions to either upgrade or replace the Symons 7 effectively in second crushing stage.

The Symons 7 is a legend in the world of cone crushers. Yet operating one is becoming more and more challenging in a business environment that puts increasing emphasis on safety and sustainability. Productivity requirements, such as the need to maximize production uptime, are also increasing, and call for flexible on-line process adjustments.

In mining, the goal is to maximize the reduction of the ore throughout the whole crushing process. In aggregates, global megatrends in developed countries are showing increased demand of finer aggregates, while developing markets still call for more coarse aggregates. Altogether, this sets a flexibility challenge for new technology.

Mines and quarries are often faced with a decision whether to upgrade existing crusher or replace it with new and more effective technologies. Metso offers a range of important Crusher upgrades for Symons machines aimed at improving safety, operating and maintenance features of your existing crusher. However, sometimes this is simply not enough and a new machine such as the Nordberg GP7 secondary gyratory crusher should be considered.

The Nordberg GP7secondary gyratory crusher has been developed to crush feed materials efficiently, reliably and economically. With 560 kW (750 hp) power and 61 tonnes (135 000 lbs) ofweight, Nordberg GP7 has the highest performance in its weight class.

Nordberg GP7 can easily be configured to work efficiently with the rest of the crushing plant thanks to the number of strokes available. The robust design of the crusher guarantees that Nordberg GP7 adapts to varying operation and on/off feed conditions. In addition, the excellent capacity of Nordberg GP7 is the result of a constant feed opening, efficient stroke and steep cavity.

Due to the fact that Nordberg GP7 allowed power is clearly bigger than of Symons 7, the increased energy is used for making your end-product curve finer. Finer and well prepared end product curve already after secondary crusher means better feed for the downstream process, ie. the next crushing and screening stage. In mining, crushing finer reduces the costs of grinding for instance.

Replacing the Symons 7' with Nordberg GP7 secondary gyratory crusher will increase your crushing plant's productivity. Nordberg GP7 can process more ore to the same reduction or the same quantity of ore to a finer reduction than Symons 7'. Nordberg GP7 is designed to fit onto a Symons 7' cone crusher foundation and it has exactly the same footprint.That translates into higher productivity with substantial savings in plant modifications or building and foundation costs.

used symons crushers for sale. symons nordberg equipment & more | machinio

used symons crushers for sale. symons nordberg equipment & more | machinio

As the second crushing process, CS High-Efficiency Cone Crusher can process river stone, granite, basalt and ironstone for medium crushing. This machine takes advantages of safety and easy maintenance, and its ov...

As the second crushing process, CS High-Efficiency Cone Crusher can process river stone, granite, basalt and ironstone for medium crushing. This machine takes advantages of safety and easy maintenance, and its ov...

As the second crushing process, CS High-Efficiency Cone Crusher can process river stone, granite, basalt and ironstone for medium crushing. This machine takes advantages of safety and easy maintenance, and its ov...

As the second crushing process, CS High-Efficiency Cone Crusher can process river stone, granite, basalt and ironstone for medium crushing. This machine takes advantages of safety and easy maintenance, and its ov...

Mining Ore Crushing CS110D Medium Cavity Nordberg Symons Cone Crusher Specifications of Cone Crusher : symons cone crusher parts 1. Hydraulic equipment 2. The fine crushing 3. Credit own manufacturer Features of...

Large crushing ratio high productivity crusher stone symons cone crusher machine for dolomite The professional stone crushing equipment includes Spring cone crusher,hydraulic cone crusher and symons cone crusher ...

Chinese factory manufacturer symons cone crusher for limestone The professional stone crushing equipment includes Spring cone crusher,hydraulic cone crusher and symons cone crusher .They are suitable to crush all...

Symons ceramic cone crusher with high capacity The professional stone crushing equipment includes Spring cone crusher,hydraulic cone crusher and symons cone crusher .They are suitable to crush all kinds of ores a...

CS Cone Series Symons Crusher CS Ore Cone Crusher Machine for Sale The professional stone crushing equipment includes Spring cone crusher,hydraulic cone crusher and symons cone crusher .They are suitable to crush...

Best price Barite Andesite cone crusher, cs series stone crusher, Symons cone crusher crushing production line As the second crushing process, CS High-Efficiency Cone Crusher can process river stone, granite, bas...

Compound Spring cone crusher price mining copper iron ore stone crushing machine, mini symons Hydraulic marble rock cone crusher As the second crushing process, CS High-Efficiency Cone Crusher can process river s...

As the second crushing process, CS High-Efficiency Cone Crusher can process river stone, granite, basalt and ironstone for medium crushing. This machine takes advantages of safety and easy maintenance, and its ov...

As the second crushing process, CS High-Efficiency Cone Crusher can process river stone, granite, basalt and ironstone for medium crushing. This machine takes advantages of safety and easy maintenance, and its ov...

symons cone crusher | henan deya machinery co., ltd

symons cone crusher | henan deya machinery co., ltd

Simmons cone crusher was introduced to China from NORDBERG company in United States in 1986, this type of crusher is superior to old type Spring Cone crusher in terms of quality, product size uniformity, product fineness, spare parts life, operating rates, and production management & maintenance cost. It can be widely used in metal and non-metallic mining, cement, construction, metallurgy and other industries. Applicable to iron ore, non-ferrous metal ore, granite, limestone, quartz stone, sandstone, pebbles and so on.

cone crusher - an overview | sciencedirect topics

cone crusher - an overview | sciencedirect topics

Cone crushers were originally designed and developed by Symons around 1920 and therefore are often described as Symons cone crushers. As the mechanisms of crushing in these crushers are similar to gyratory crushers their designs are similar, but in this case the spindle is supported at the bottom of the gyrating cone instead of being suspended as in larger gyratory crushers. Figure5.3 is a schematic diagram of a cone crusher.

The breaking head gyrates inside an inverted truncated cone. These crushers are designed so that the head-to-depth ratio is larger than the standard gyratory crusher and the cone angles are much flatter and the slope of the mantle and the concaves are parallel to each other. The flatter cone angles help to retain the particles longer between the crushing surfaces and therefore produce much finer particles. To prevent damage to the crushing surfaces, the concave or shell of the crushers is held in place by strong springs or hydraulics which yield to permit uncrushable tramp material to pass through.

The secondary crushers are designated as Standard cone crushers having stepped liners and tertiary Short Head cone crushers, which have smoother crushing faces and steeper cone angles of the breaking head. The approximate distance of the annular space at the discharge end designates the size of the cone crushers. A brief summary of the design characteristics is given in Table5.4 for crusher operation in open-circuit and closed-circuit situations.

The Standard cone crushers are for normal use. The Short Head cone crushers are designed for tertiary or quaternary crushing where finer product is required. These crushers are invariably operated in closed circuit. The final product sizes are fine, medium or coarse depending on the closed set spacing, the configuration of the crushing chamber and classifier performance, which is always installed in parallel.

For finer product sizes, i.e., less than 6mm, special cone crushers known as Gyradisc crushers are available. The operation is similar to the standard cone crushers, except that the size reduction is caused more by attrition than by impact [5]. The reduction ratio is around 8:1 and as the product size is relatively small the feed size is limited to less than 50mm with a nip angle between 25 and 30. The Gyradisc crushers have head diameters from around 900 to 2100mm. These crushers are always operated under choke feed conditions. The feed size is less than 50mm and therefore the product size is usually less than 69mm.

Maintenance of the wear components in both gyratory and cone crushers is one of the major operating costs. Wear monitoring is possible using a Faro Arm (Figure 6.10), which is a portable coordinate measurement machine. Ultrasonic profiling is also used. A more advanced system using a laser scanner tool to profile the mantle and concave produces a 3D image of the crushing chamber (Erikson, 2014). Some of the benefits of the liner profiling systems include: improved prediction of mantle and concave liner replacement; identifying asymmetric and high wear areas; measurement of open and closed side settings; and quantifying wear life with competing liner alloys.

Various types of rock fracture occur at different loading rates. For example, rock destruction by a boring machine, a jaw or cone crusher, and a grinding roll machine are within the extent of low loading rates, often called quasistatic loading condition. On the contrary, rock fracture in percussive drilling and blasting happens under high loading rates, usually named dynamic loading condition. This chapter presents loading rate effects on rock strengths, rock fracture toughness, rock fragmentation, energy partitioning, and energy efficiency. Finally, some of engineering applications of loading rate effects are discussed.

In Chapter4, we have already seen the mechanism of crushing in a jaw crusher. Considering it further we can see that when a single particle, marked 1 in Figure11.5a, is nipped between the jaws of a jaw crusher the particle breaks producing fragments, marked 2 and 3 in Figure11.5b. Particles marked 2 are larger than the open set on the crusher and are retained for crushing on the next cycle. Particles of size 3, smaller than the open set of the crusher, can travel down faster and occupy or pass through the lower portion of the crusher while the jaw swings away. In the next cycle the probability of the larger particles (size 2) breaking is greater than the smaller sized particle 3. In the following cycle, therefore, particle size 2 is likely to disappear preferentially and the progeny joins the rest of thesmaller size particles indicated as 3 in Figure11.5c. In the figures, the position of the crushed particles that do not exist after comminution is shaded white (merely to indicate the positions they had occupied before comminution). Particles that have been crushed and travelled down are shown in grey. The figure clearly illustrates the mechanism of crushing and the classification that takes place within the breaking zone during the process, as also illustrated in Figure11.4. This type of breakage process occurs within a jaw crusher, gyratory crusher, roll crusher and rod mills. Equation (11.19) then is a description of the crusher model.

In practice however, instead of a single particle, the feed consists of a combination of particles present in several size fractions. The probability of breakage of some relatively larger sized particles in preference to smaller particles has already been mentioned. For completeness, the curve for the probability of breakage of different particle sizes is again shown in Figure11.6. It can be seen that for particle sizes ranging between 0 K1, the probability of breakage is zero as the particles are too small. Sizes between K1 and K2 are assumed to break according a parabolic curve. Particle sizes greater than K2 would always be broken. According to Whiten [16], this classification function Ci, representing the probability of a particle of size di entering the breakage stage of the crusher, may be expressed as

The classification function can be readily expressed as a lower triangular matrix [1,16] where the elements represent the proportion of particles in each size interval that would break. To construct a mathematical model to relate product and feed sizes where the crusher feed contains a proportion of particles which are smaller than the closed set and hence will pass through the crusher with little or no breakage, Whiten [16] advocated a crusher model as shown in Figure11.7.

The considerations in Figure11.7 are similar to the general model for size reduction illustrated in Figure11.4 except in this case the feed is initially directed to a classifier, which eliminates particle sizes less than K1. The coarse classifier product then enters the crushing zone. Thus, only the crushable larger size material enters the crusher zone. The crusher product iscombined with the main feed and the process repeated. The undersize from the classifier is the product.

While considering the above aspects of a model of crushers, it is important to remember that the size reduction process in commercial operations is continuous over long periods of time. In actual practice, therefore, the same operation is repeated over long periods, so the general expression for product size must take this factor into account. Hence, a parameter v is introduced to represent the number of cycles of operation. As all cycles are assumed identical the general model given in Equation (11.31) should, therefore, be modified as

Multiple vectors B C written in matrix form:BC=0.580000.200.60000.120.180.6100.040.090.20.571.000000.700000.4500000=0581+00+00+000.580+00.7+00+000580+00+00.45+000.580+00+00+000.21+0.60+00+000.20+0.60.7+00+000.20+0.60+00.45+000.20+0.60+00+000.121+0.180+0.610+000.120+0.180.7+0.610+000.120+0.180+0.610.45+000.120+0.180+0.610+000.041+0.090+0.20+0.5700.040+0.090.7+0.20+0.5700.040+0.090+0.20.45+0.5700.040+0.090+0.20+0.570=0.580000.20.42000.120.1260.274500.040.0630.090

Now determine (I B C) and (I C)(IBC)=10.5800000000.210.42000000.1200.12610.27450000.0400.06300.0910=0.420000.20.58000.120.1260.725500.040.0630.091and(IC)=000000.300000.5500001

Now find the values of x1, x2, x3 and x4 as(0.42x1)+(0x2)+(0x3)+(0x4)=10,thereforex1=23.8(0.2x1)+(0.58x2)+(0x3)+(0x4)=33,thereforex2=65.1(0.12x1)+(0.126x2)+(0.7255x3)+(0x4)=32,thereforex3=59.4(0.04x1)+(0.063x2)+(0.09x3)+(1x4)=20,thereforex4=30.4

In this process, mined quartz is crushed into pieces using crushing/smashing equipment. Generally, the quartz smashing plant comprises a jaw smasher, a cone crusher, an impact smasher, a vibrating feeder, a vibrating screen, and a belt conveyor. The vibrating feeder feeds materials to the jaw crusher for essential crushing. At that point, the yielding material from the jaw crusher is moved to a cone crusher for optional crushing, and afterward to effect for the third time crushing. As part of next process, the squashed quartz is moved to a vibrating screen for sieving to various sizes.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100mm. They are classified as jaw, gyratory, and cone crushers based on compression, cutter mill based on shear, and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake. A Fritsch jaw crusher with maximal feed size 95mm, final fineness (depends on gap setting) 0.315mm, and maximal continuous throughput 250Kg/h is shown in Fig. 2.8.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing hard metal scrap for different hard metal recycling processes. Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor. Crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough to pass through the openings of the grating or screen. The size of the product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure, forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions. A design for a hammer crusher (Fig. 2.9) essentially allows a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, the circulation of suspended matter in the gas between A and B zones is established and the high pressure of air in the discharging unit of crusher is reduced.

Crushers are widely used as a primary stage to produce the particulate product finer than about 50100 mm in size. They are classified as jaw, gyratory and cone crushers based on compression, cutter mill based on shear and hammer crusher based on impact.

A jaw crusher consists essentially of two crushing plates, inclined to each other forming a horizontal opening by their lower borders. Material is crushed between a fixed and a movable plate by reciprocating pressure until the crushed product becomes small enough to pass through the gap between the crushing plates. Jaw crushers find a wide application for brittle materials. For example, they are used for comminution of porous copper cake.

A gyratory crusher includes a solid cone set on a revolving shaft and placed within a hollow body, which has conical or vertical sloping sides. Material is crushed when the crushing surfaces approach each other and the crushed products fall through the discharging opening.

Hammer crushers are used either as a one-step primary crusher or as a secondary crusher for products from a primary crusher. They are widely used for crushing of hard metal scrap for different hard metal recycling processes.

Pivoted hammers are pendulous, mounted on the horizontal axes symmetrically located along the perimeter of a rotor and crushing takes place by the impact of material pieces with the high speed moving hammers and by contact with breaker plates. A cylindrical grating or screen is placed beneath the rotor. Materials are reduced to a size small enough pass through the openings of the grating or screen. The size of product can be regulated by changing the spacing of the grate bars or the opening of the screen.

The feature of the hammer crushers is the appearance of elevated pressure of air in the discharging unit of the crusher and underpressure in the zone around of the shaft close to the inside surface of the body side walls. Thus, the hammer crushers also act as high-pressure forced-draught fans. This may lead to environmental pollution and product losses in fine powder fractions.

A design for a hammer crusher (Figure 2.6) allows essentially a decrease of the elevated pressure of air in the crusher discharging unit [5]. The A-zone beneath the screen is communicated through the hollow ribs and openings in the body side walls with the B-zone around the shaft close to the inside surface of body side walls. As a result, circulation of suspended matter in the gas between A- and B-zones is established and high pressure of air in the discharging unit of crusher is reduced.

For a particular operation where the ore size is known, it is necessary to estimate the diameter of rolls required for a specific degree of size reduction. To estimate the roll diameter, it is convenient to assume that the particle to be crushed is spherical and roll surfaces are smooth. Figure6.2 shows a spherical particle about to enter the crushing zone of a roll crusher and is about to be nipped. For rolls that have equal radius and length, tangents drawn at the point of contact of the particle and the two rolls meet to form the nip angle (2). From simple geometry it can be seen that for a particle of size d, nipped between two rolls of radius R:

Equation (6.2) indicates that to estimate the radius R of the roll, the nip angle is required. The nip angle on its part will depend on the coefficient of friction, , between the roll surface and the particle surface. To estimate the coefficient of friction, consider a compressive force, F, exerted by the rolls on the particle just prior to crushing, operating normal to the roll surface, at the point of contact, and the frictional force between the roll and particle acting along a tangent to the roll surface at the point of contact. The frictional force is a function of the compressive force F and is given by the expression, F. If we consider the vertical components of these forces, and neglect the force due to gravity, then it can be seen that at the point of contact (Figure6.2) for the particle to be just nipped by the rolls, the equilibrium conditions apply where

As the friction coefficient is roughly between 0.20 and 0.30, the nip angle has a value of about 1117. However, when the rolls are in motion the friction characteristics between the ore particle will depend on the speed of the rolls. According to Wills [6], the speed is related to the kinetic coefficient of friction of the revolving rolls, K, by the relation

Equation (6.4) shows that the K values decrease slightly with increasing speed. For speed changes between 150 and 200rpm and ranging from 0.2 to 0.3, the value of K changes between 0.037 and 0.056. Equation (6.2) can be used to select the size of roll crushers for specific requirements. For nip angles between 11 and 17, Figure6.3 indicates the roll sizes calculated for different maximum feed sizes for a set of 12.5mm.

The maximum particle size of a limestone sample received from a cone crusher was 2.5cm. It was required to further crush it down to 0.5cm in a roll crusher with smooth rolls. The friction coefficient between steel and particles was 0.25, if the rolls were set at 6.3mm and both revolved to crush, estimate the diameter of the rolls.

It is generally observed that rolls can accept particles sizes larger than the calculated diameters and larger nip angles when the rate of entry of feed in crushing zone is comparable with the speed of rotation of the rolls.

Jaw crushers are mainly used as primary crushers to produce material that can be transported by belt conveyors to the next crushing stages. The crushing process takes place between a fixed jaw and a moving jaw. The moving jaw dies are mounted on a pitman that has a reciprocating motion. The jaw dies must be replaced regularly due to wear. Figure 8.1 shows two basic types of jaw crushers: single toggle and double toggle. In the single toggle jaw crusher, an eccentric shaft is installed on the top of the crusher. Shaft rotation causes, along with the toggle plate, a compressive action of the moving jaw. A double toggle crusher has, basically, two shafts and two toggle plates. The first shaft is a pivoting shaft on the top of the crusher, while the other is an eccentric shaft that drives both toggle plates. The moving jaw has a pure reciprocating motion toward the fixed jaw. The crushing force is doubled compared to single toggle crushers and it can crush very hard ores. The jaw crusher is reliable and robust and therefore quite popular in primary crushing plants. The capacity of jaw crushers is limited, so they are typically used for small or medium projects up to approximately 1600t/h. Vibrating screens are often placed ahead of the jaw crushers to remove undersize material, or scalp the feed, and thereby increase the capacity of the primary crushing operation.

Both cone and gyratory crushers, as shown in Figure 8.2, have an oscillating shaft. The material is crushed in a crushing cavity, between an external fixed element (bowl liner) and an internal moving element (mantle) mounted on the oscillating shaft assembly. An eccentric shaft rotated by a gear and pinion produces the oscillating movement of the main shaft. The eccentricity causes the cone head to oscillate between the open side setting (o.s.s.) and closed side setting (c.s.s.). In addition to c.s.s., eccentricity is one of the major factors that determine the capacity of gyratory and cone crushers. The fragmentation of the material results from the continuous compression that takes place between the mantle and bowl liners. An additional crushing effect occurs between the compressed particles, resulting in less wear of the liners. This is also called interparticle crushing. The gyratory crushers are equipped with a hydraulic setting adjustment system, which adjusts c.s.s. and thus affects product size distribution. Depending on cone type, the c.s.s. setting can be adjusted in two ways. The first way is by rotating the bowl against the threads so that the vertical position of the outer wear part (concave) is changed. One advantage of this adjustment type is that the liners wear more evenly. Another principle of setting adjustment is by lifting/lowering the main shaft. An advantage of this is that adjustment can be done continuously under load. To optimize operating costs and improve the product shape, as a rule of thumb, it is recommended that cones always be choke-fed, meaning that the cavity should be as full of rock material as possible. This can be easily achieved by using a stockpile or a silo to regulate the inevitable fluctuation of feed material flow. Level monitoring devices that detect the maximum and minimum levels of the material are used to start and stop the feed of material to the crusher as needed.

Primary gyratory crushers are used in the primary crushing stage. Compared to the cone type crusher, a gyratory crusher has a crushing chamber designed to accept feed material of a relatively large size in relation to the mantle diameter. The primary gyratory crusher offers high capacity thanks to its generously dimensioned circular discharge opening (which provides a much larger area than that of the jaw crusher) and the continuous operation principle (while the reciprocating motion of the jaw crusher produces a batch crushing action). The gyratory crusher has capacities starting from 1200 to above 5000t/h. To have a feed opening corresponding to that of a jaw crusher, the primary gyratory crusher must be much taller and heavier. Therefore, primary gyratories require quite a massive foundation.

The cone crusher is a modified gyratory crusher. The essential difference is that the shorter spindle of the cone crusher is not suspended, as in the gyratory, but is supported in a curved, universal bearing below the gyratory head or cone (Figure 8.2). Power is transmitted from the source to the countershaft to a V-belt or direct drive. The countershaft has a bevel pinion pressed and keyed to it and drives the gear on the eccentric assembly. The eccentric assembly has a tapered, offset bore and provides the means whereby the head and main shaft follow an eccentric path during each cycle of rotation. Cone crushers are used for intermediate and fine crushing after primary crushing. The key factor for the performance of a cone type secondary crusher is the profile of the crushing chamber or cavity. Therefore, there is normally a range of standard cavities available for each crusher, to allow selection of the appropriate cavity for the feed material in question.

The main task of renovation construction waste handling is the separation of lightweight impurities and construction waste. The rolling crusher with opposite rollers is capable of crushing the brittle debris and compressing the lightweight materials by the low-speed and high-pressure extrusion of the two opposite rollers. As the gap between the opposite rollers, rotation speed, and pressure are all adjustable, materials of different scales in renovation construction waste can be handled.

The concrete C&D waste recycling process of impact crusher+cone crusher+hoop-roller grinder is also capable of handling brick waste. In general, the secondary crushing using the cone crusher in this process with an enclosed crusher is a process of multicrushing, and the water content of waste will become an important affecting factor. The wet waste will be adhered on the wall of the grinding chamber, and the crushing efficiency and waste discharging will be affected. When the climate is humid, only coarse impact crushing is performed and in this case the crushed materials are used for roadbase materials. Otherwise, three consecutive crushings are performed and the recycled coarse aggregate, fine aggregate, and powder materials are collected, respectively.

The brick and concrete C&D waste recycling process of impact crusher+rolling crusher+hoop-roller grinder is also capable of handling the concrete waste. In this case, the water content of waste will not be an important affecting factor. This process is suitable in the regions with wet climates.

The renovation C&D waste recycling process of rolling crusher (coarse/primary crushing)+rolling crusher (intermediate/secondary crushing)+rolling crusher (fine/tertiary crushing) is also capable of handling the two kinds of waste discussed earlier. The particle size of debris is crushed less than 20mm and the lightweight materials are compressed, and they are separated using the drum sieve. The energy consumption is low in this process; however, the shape of products is not good (usually flat and with cracks). There is no problem in roadbase material and raw materials of prefabricated product production. But molders (the rotation of rotors in crusher is used to polish the edge and corner) should be used for premixed concrete and mortar production.

symons cone crusher - eastman rock crusher

symons cone crusher - eastman rock crusher

Symons compound cone crusher is a modern high performance crusher designed and developed by EASTMAN according to the needs of users, based on the principle of lamination crushing and the concept of more crushing and less grinding, which integrates optimized cavity type and reasonable stroke.Applicationsmining, quarry, aggregate making, etc.MaterialsMaterials with compressive strength not exceeding 350MPa, such as river pebbles, granite, basalt, iron ore, shale, limestone, gangue, quartz, diabase, marble, copper ore, cobblestone, etc.

cone crusher | henan deya machinery co., ltd

cone crusher | henan deya machinery co., ltd

Symons cone crusher (spring cone crusher) can crush materials of above medium hardness. And it is widely used in metallurgy, building, hydropower, transportation, chemical industry, etc. When used with jaw crusher, it can be used as secondary, tertiary or quaternary crushing. Generally speaking, the standard type of Symons cone crusher is applied to medium crushing. The medium type is applied to fine crushing. The short head type is applied to coarse fine crushing. As casting steel technique is adopted, the machine has good rigidity and large high strength(via wikipedia).

Related News
  1. india small cone crusher for concrete crushing for sale
  2. ondorhaan economic gypsum sand washing machine for sale
  3. what brand cone crusher good
  4. economic barite mining equipment in leon
  5. lami economic medium calcium carbonate jaw crusher
  6. 4 1 4 standard symon cone crusher lubrication circuit
  7. small symons cone crusher for mining in brunei
  8. symons cone crusher working
  9. symons cone crusher components
  10. dxn hydraulic vsi crusher silica mining
  11. lime kiln and caustisizing
  12. 48 inch 60 inch diameter sieve screen circular vibrating sieve machine for grains
  13. mobile rock crusher
  14. indonesian kaolin cyanide equipment
  15. basic cone crusher diagram
  16. tantalite ore ultrafine grinding mill price
  17. double roller crusher design
  18. weld racing stone crusher rims
  19. potassium feldspar lumps mobile impact crusher price
  20. rod mill of triple rollers four drums mill