Hello, my partner! Let's explore the mining machine together!

[email protected]

team rock crusher

team rock crusher

team rock crusher

All content is for entertainment purposes only. Content does not replace and may not reflect official tournament standings. Official standings can be obtained by contacting the tournament committee.

aggregate equipment | mining equipment | quarry equipment

aggregate equipment | mining equipment | quarry equipment

Our team works hard to design and build aggregate production plants, upgrade crushing and screening equipment, introduce aggregate conveyor systems, and assemble full-circuit solutions with you in mind. The quarry and mining equipment we carry is no exception - Kemper partners with only the top aggregate equipment manufacturers in the industry.

We'll work closely with you to recommend the rock crushers, screener equipment, aggregate conveyors, portable crushing and screening plants, or washing plant equipment that's right for your job. Read on to learn about the different aggregate equipment we carry under our product lines - built to help you complete your project:

For more than 30 years, Kemper has developed a culture of excellence. We've worked hard to build trusted relationships with the best aggregate equipment manufacturers in the industry. Our team strives to cultivate and maintain these important relationships every day. Our partnerships are so important because they benefit you. When we work with the best, you get the best. Kemper is proud to partner with:

types of rock crushers | quarry crushing equipment | kemper

types of rock crushers | quarry crushing equipment | kemper

Do you need to process sand, gravel, minerals, rock, or other aggregate products and have not yet purchased or leased crushing equipment? Theres no questionyou need to work with a capable and professional material handling equipment design and engineering company dedicated to selling, renting, and installing the best new crushers for your needs.

However, if youre new to the aggregate processing industry, you probably have a lot of questions about rock crushers. As foundational material handling equipment in all plants, crushers need to coordinate seamlessly with screens, conveyor systems, and washing equipment.

It is common to use multiple crusher types within a project and set them up as stations in a circuit format to perform the necessary material reduction work. In many cases, primary, secondary, and tertiary, and quaternary stations are installed to reduce the rock to the desired size, shape, and consistency.

For instance, if the final size of your product only needs to be between 4 inches and 6 inches, a primary jaw or impact crusher can accomplish your goals. However, you will likely require a much finer product, and that means incorporating up to threeor even fourstations with a variety of crusher types.

As the first stage in a crushing circuit following extraction from a mine site, (or in the case of recycled asphalt production, delivery to the RAP processing plant via truck transport), primary crushing reduces material to a size and shape that can be handled by the secondary crusher.

Typically, the minimum setting on most primary crushers will be about 4 to 6 inches, as noted above. Compression-style jaw, cone, impact crushers, and gyratory crushers are most often appropriate as primary crushing equipment types, though there can be overlap between primary and secondary crushers as far as suitable types.

In secondary crushing, reduction ratios become an essential consideration. Knowing just how fine you need your final output to be, along with the feed requirements of your tertiary or final reduction crushing station, will help you determine how much reduction needs to take place within this stage.

Cone crushers are often placed within the secondary crushing station because they are versatile in terms of feed, closed side setting, speed, and throw. With cone crushers, though, it is essential to operate them at consistent choked settings to keep productivity up.

The goal of the tertiary (third), quaternary (fourth) or final reduction stage of the crushing process is to size and shape rock or other material into a marketable product. Again, there may be overlap between stages in terms of which crusher styles work best.

Sandstone, limestone, gravel, and granite are arguably the most common aggregates used in the construction industry today, but these rocks have very different hardness and abrasiveness characteristics.

The answer might be three to four if youre talking about setting up stations in a complete rock crushing plant. Those are the primary, secondary, and tertiary/quaternary/final reduction rock crushers, which we covered above.

Of course, there are also different styles of rock crushers. Compression-style jaw and cone crushers, for example, fit into the various stations in a crushing circuit (depending on factors like the sizes, varieties, and hardness of the rock you need to crush, as well as the necessary output).

The number of crusher types in terms of style and configuration can be more challenging to quantify, as there are lots of ways to customize rock crushers. However, youll find four basic designscone, jaw, gyratory, and impact crushersoperating within many crushing plants.

Jaw crushers are also known as rock breakers and are used to break up larger, harder materials into more manageable pieces. They tend to do well with many different types of materials and dont display as much wear and tear as impact-style rock crushers. They also produce minimal fine materials and dust, though the finished product with this type of rock crusher almost always requires secondary crushing.

To learn more about jaw crushers, youll want to catch our previous blog post all about these tough pieces of material handling equipment and the most common questions operators have about jaw crushers.

Cone crushers can accept medium-hard to very hard and abrasive feeds that might be dry or wet, though not sticky (whereas gyratory crushers are better at handling softer, dryer feeds). Their output will be a relatively cubical product, with a reduction ratio of about 6-to-1 through 4-to-1.

Impact-style crushers include VSIs, as well as horizontal shaft impactors (HSIs), and are best used with less abrasive rock types, like limestone. These types of machines break apart material by the impacting forces of certain wear parts known as blow bars and impact plates or toggles.

Some operations also use impact-style crushers after they have already used a different type of rock crusher that produces a more elongated stone. This helps further shape the crushed material into a finer consistency with a more cubical nature.

Impact crushers tend to be less expensive than compression crushers (aka cone and jaw crushers, which we already covered) and have a higher reduction ratio. They can also break sedimentary deposit-type rockslimestone and similaralong natural lines, which rounds off sharp angles and weak edges. This can produce a result that is more sand-like in nature.

Drawbacks of impact crushers include their tendency to produce an excess of fine materials if used with softer rocks. Impact rock crushers can also require frequent part changes and can create a large amount of dust that can be an issue on some worksites.

Stationary plants have long been preferred because they feature a higher capacity and efficiency and lower production costs with easier maintenance. They also have historically featured a lower energy cost if you have on-site electricity, and no additional equipment is needed to move them from place to place.

Its true that portable material handling equipment already offers unmatched production flexibility. For instance, if you need to move your crushing plant more than once a year to multiple job sites, you are likely better off investing in portable equipment.

These self-contained plants are better suited to smaller projects and can be moved from project to project as necessary. They are often still not quite as efficient and have less capacity than stationary plants, but they can be more cost-effective in the long run if you have multiple projects in different areas.

Here at Kemper Equipment, we offer the best performing crushing equipment that will work hard to make any finished products you plan to produceincluding sand, gravel, fertilizer, specialty mineral products, recycled asphalt, salt, coal, and slagefficiently and affordably. Contact us today to discover how we can provide a custom-designed crushing circuit or retrofit a new rock crusher into your existing operation.

rock & stone crushers | rock crushing machines | williams crusher

rock & stone crushers | rock crushing machines | williams crusher

You are now leaving our website and entering a website hosted by another party. Please be advised that by continuing you will no longer be subject to the protection of our privacy and security policies. First Bank does not guarantee the experience and content accuracy of the new website you will visit.

Williams Patent Crusher is proud to offer a line of rock crushing machines that provide a wide range of available options. We understand that every crushing and grinding job is different, and we strive to make sure every machine we construct is a custom solution that gets a specific job done right. Thats why weve been an industry leader in rock crushing for over 150 years.

Our engineers have designed a whole catalog of rock and stone crusher equipment capable of completing a wide range of medium to large-sized applications. Although most of our crushers and mills are constructed for heavy-duty, industrial projects, we do offer machines for smaller stone crusher applications as well. Learn more below.

Blasting, drill, and scaling out limestone requires the right equipmentand when it comes to limestone material size reduction, its no different. Williams Crusher has designed and manufactured the most durable and efficient limestone crusher machines on the market for over 150 years. Browse our catalog of limestone mills & crushers.

Williams Crusher designs and manufactures innovative diatomaceous earth grinding mills for grinding, drying, and classifying the material to a powdery, dust-like form. Our industrial diatomaceous earth grinders can be manufactured to produce a size-reduced product needed for your application. Learn more about our diatomaceous earth grinding mills.

The Williams Crusher engineers design and manufacture rugged barite grinding mills and crushers that can accomplish the appropriate size reduction needed for your application. Each grinding project is unique, and the Williams team can help create a barite grinding or crushing solution to fit your needs. Learn more about our barite grinding mills & crushers.

Williams Crusher offers a variety of gypsum mills and pulverizers that can process both synthetic gypsum as well as natural gypsum rock to the appropriate size you need for your application. Each pulverizing and grinding project is unique, which is why our gypsum mills are designed to fit your needs. Learn more about our gypsum mills & pulverizers

Exhibiting powerful design and rugged durability, the Willpactor is perfect for primary rock crushing applications. Willpactors thrive in high-capacity applications crushing large run-of-mine rock, with machines available in sizes to accommodate 44 to 72 rock. External product size adjustment and solid impact block adjustment are just some of the features of these rock crushing machines.

The Willpactor II handles feed sizes beyond the range of conventional secondary and tertiary crushers. A large feed opening, contoured hi-chrome rotor, and easy maintenance are just a few of the features that make the Willpactor II impact rock crusher machine a great asset for any rock crushing application.

The Williams Reversible Impactor reduces maintenance and operating costs with few tolerances between crushing surfaces and no cage bars. Horsepower requirements per ton are generally low, making the Williams Reversible Impactor rock crushing machine a cost-efficient option.

The Williams Traveling Breaker Plate Mill is more suitable for clay and muddy rock crushing. The breaker plates on this hammer mill continually travel while in use with all slack on the away side. This design lengthens the life of the plates and eliminates clogging when refining wet, sticky material.

We manufacture a large variety of hammer mills and hammer rock crushers to handle virtually any size reduction job. From our large High-Tonnage Hammer Mills to smaller Type GP Hammer Mills, we have a stone crusher solution thats suitable for your project.

Our Vertical Roller Mill Pulverizers utilize centrifugal force to grind material while maintaining low operating costs. Featuring easily replaceable wear parts, automated process controls and nearly infinite turndown thanks to VFAC drives. These machines are great for pulverizing rock in fine-grind applications.

rock crushers at kellyco | gold prospecting equipment

rock crushers at kellyco | gold prospecting equipment

In order to crush rocks and extract gold, you will need the right equipment that can achieve this quickly and efficiently. That being said, utilizing rock crushers will help prevent you from missing the opportunity of hitting paydirt. Portable rock crushers will change the way you prospect for gold and with several options available, making sure that you select the correct product will be invaluable.

The term itself is pretty self-explanatory. These machines are designed to crush any type of stone from quartz to limestone and everything in between. How much is able to be processed per hour will depend on the model you purchase.

The intention of small rock crushers, such as those we have here at Kellyco, is to allow you to extract more gold instead of leaving any paydirt behind. The amount of gold that can be contained within rocks in areas you didnt know were there may surprise you. However, without a rock crusher in your arsenal, you will never be aware of what was left behind.

Portable rock crushers use a very simple approach, power. With various sized engines available depending on the model, these machines are designed to take small rocks and, thanks to a huge amount of pressure and power, crush them down and allow you to process them through your sluice box.

The aim of any small rock crusher for sale is to be able to break that rock down into a fine powder. In doing so, it will be able to pass through a classifier before going through the sluice box and any gold can then be separated. Even relatively small pieces of rock that are left intact could lead to you missing out on some gold, and when you know you have hit paydirt then you hardly want to leave anything behind.

Most models, including the Keene G-Force rock crusher, will use a hopper box with gravity to move the rocks through the crusher. The rock is fed into the hopper box and then moves into the central compartment of the crusher. A huge amount of force effectively smashes the rock at high speed and the greater the force then the finer the powder. With that in mind, the power of the engine contained within the rock crusher will be important.

With several options available, knowing which are the best rock crushers for sale will make your job of identifying the right product for you easier. Of course, budget may play a part but Kellyco does have a number of small portable rock crushers for sale across a wide price range.

There are several key points to consider when looking at purchasing a portable rock crusher. First, there is the volume of rock that can process for up to an hour. With some capable of producing over 2 tons of powder, also known as grind, this should be more than adequate for the majority of treasure hunters.

Another point to remember is the size of rock that the crusher can handle. These kinds of rock crushers for sale are not designed to take large boulders and break them down on an industrial scale. Instead, we are talking about rocks that are around one inch in size that can be effectively smashed in seconds. Once again, we recommend that you check the maximum size that the model you are looking at can take before making your purchase.

The best rock crushers for sale will contain a large hopper box, be capable of crushing a substantial amount of rock in one hour, and break things down into an easy to manage powder. As long as those points are met, then you should not have any problem extracting as much gold as possible from your expedition.

There are several additional features that deserve to be mentioned with a rock crusher. For example, you need to examine how a particular model is powered. With both gas and electric available as options, it should be easy for you to get things started. As a side-note, the gas version is often regarded as being cheaper to operate. Also, we have to think about transportation. These machines are not the lightest around which is why there are lighter models, such as the Keene trailer mounted crusher, on the market. This does make it easier to get to those more remote areas that you may wish to venture to on your expeditions.

You may wish to consider looking at the process that the rock crusher uses in order to deliver the powder. Different models may put the rock through various processes with each stage resulting in something even finer than before.

Finally, there has to be the question of replacing parts even when you are out there in the wild. Cleaning the machine and clearing it of debris is important or it may result in becoming clogged. However, models that have been manufactured by Keene will all be easy to adjust and maintain so this shouldnt be a problem.

If rock crushers are something of interest to you, but you are unsure of what to do next, then feel free to reach out to our customer service team. Contact us directly via our customer care department and our team of expert gold prospectors will be able to advise you on the best rock crusher for your needs and answer any questions that you may have.

portable rock crushers

portable rock crushers

As it relates to portable crushers, the basic portability concept under investigation here might better be described by the phrase decentralized crushing to allow automated ore haulage. Clearly this means more and smaller crushers exhibiting some degree of mobility, and automated ore haulage usually means belt conveyors. The trade-off is a necessarily more costly crushing system against a more efficient and productive ore handling system. From the crusher manufacturers point of view the challenge is to achieve small size and portability without sacrificing too much in the important areas of feed opening, throughput, system availability, and capital and operation costs.

Portable in Portable Rock Crushers simply means that the crusher is moved periodically in order to be close to production, thus minimizing costly haulage of run of mine material. Within this simplified definition however, portability has quite different meanings in mines of widely varying ore bodies and mining plans. We shall further assume that a portable crusher is one that can be moved through standard mine passageways with minimal dismantling, and can be set up with little or no site excavation.

Underground is obvious, and when taken with portable brings to mind such terms as low, narrow, horizontal, light, serviceable, and mobile. This study may define a machine that is also applicable to some above ground installations but no attempt will be made to enhance such applicability at the expense of underground performance.

Hard-rock is sometimes taken to mean non-coal, but this broad definition would include many weaker mineral mines not in need of the fundamentally new equipment that is the subject of this study. Many of these non-coal mines have, however, developed highly efficient and mechanized coal-like mining methods that would be applicable to hard-rock mines if suitable equipment (crushers) were available. We have therefore gained valuable information by studying these mines, but the intended beneficiary of this investigation is the underground hard-rock industry, defined as those mines that cannot economically make use of presently available portable underground crushers.

To begin, let us attempt to define approximate requirements in order to establish a background for further specification of performance parameters, and to form the basis for a critical examination of existing crusher designs. In fact, it seems clear that no single optimum set of parameters can ever be sharply defined. However, with adequate documentation and an appreciation of likely individual case variations, such an approximate set of parameters can serve as the basis for new concept generation and further development work.

Before defining what a portable rock crusher is, we need to know how it will be used. Fortunately for the purposes of this study, portable underground crusher applications may be divided into two rather distinct categories, and one of these, though worthy of further thoughts and development, does not require fundamentally new hardware development. The distinction, perhaps predictably, is primarily one of physical machine size, although, to a lesser degree, distinctions can also be made in the desired degree of portability within a given size category.

The first category, which we shall dismiss for the moment, is one in which machine size, per se, is not limiting. Applications in this category are high head-room room and pillar mines, such as large limestone mines having 35 foot backs , and, in the future, oil shale mines having even higher backs. While significant portability improvements can be made in assembly methods and general layout, as discussed in Section 9, this category of applications ran in general be satisfied by existing manufacturers through modification of essentially standard machine components.

The second category is that in which machine size is very much a limiting factorso much so that todays standard hard rock primaries are simply not applicable. The two general mine types falling in this category include, obviously, low head room room and pillar mines and, perhaps not so obviously, most mines with vertically oriented ore bodies. The latter include caving mines, whatever the caving mechanism (block caving, sub-level caving, etc.), and other generally vertical mine plans such as open stope, shrinkage stoping, cut and fill, etc. . For purposes of this study, these mines are collectively characterized by gravity delivery of ore to a stationary or nearly stationary, draw point or chute from which the ore is handled (and often rehandled) by a variety of means in both the horizontal and vertical directions. Even though massive ore bodies may be involved, typical drift dimensions in such mines are not large, on the order of 8 to 12 feet high by not much greater widths.

Both mine types in this category of small applications suggest maximum installed crusher sizes of 7 to 9 feet high, 8-10 feet wide, and any reasonable length (the latter determined by transport conditions rather than installed dimensions. It is important to note that this height includes whatever overhead feed components (and dump space) may be required by vertical feed crushersthus standard top fed jaw crushers, which would normally be selected for hard rock, are much too tall.

Portable crushers will receive run of mine material from the face regardless of the mining method or the primary haulage system used, and then crush this ore and feed it into a more continuous and efficient ore haulage system. Within these applications it appears that for a decentralised crusher arrangement a throughput of 100 to 800 tons per hour will suffice. Although there is no clear-cut limit, this throughput is obviously a function of the size of the mining unit it services, and the ability, within the stated drift dimensions, of the primary haulage system to deliver material to the crusher. Thus it is not surprising that a limited range of throughputs will serve a wide variety of mining operations.

Just like the very large central crusher located (probably) at the shaft, the proposed decentralised portable crusher system must handle ROM (run of mine) ore. This fact, when taken with the low headroom restrictions, will continually challenge the would be portable crusher designer.

A study by the U. S. Bureau of Mines in five underground mines, utilising five different mining methods, in extremely different types of rocks, showed a striking similarity of over-size ore, not only in mean size but in shape as well. Table I presents these results. The indicated size uniformity is considered misleading, particularly in view of the fact that the study did not attempt to

determine the percentage of ore exceeding the stated oversize. The shape trend of this data (3:2:1) is more interesting, indicating a condition somewhere between block and slabby. Larger variations in size of oversize are supported by another study which was concerned with block caving mines. Results of this study, also presented in Table I, characterize the block cave mine of the preceding study as having fine ore. There is clearly no single optimum crusher feed opening for these, let alone all, block caving mines, although it is probably safe to say that block caving permits the least control of fragment size and can thus be expected to present highly variable conditions.

Mining plans relying on drilling and blasting for fragmentation control will, no doubt, show greater uniformity in size of oversize, but great variations are to be expected in the size distribution of ROM ore from mine to mine. Assuming a successful crusher can avoid direct attack of the three-to-five font major fragment dimension indicated in Table I, and assuming some form of control over occasional abnormal oversize, it is likely that minimum or critical feed openings in the 30-36 inch range will satisfy a very large percentage of mines.

To establish approximate product size, let us assume that the product is to be belt conveyed. In most cases this will be true, and it is expected that maximum economic benefit will occur in this combination. The feeder-breaker, so successfully used on coal mine section belts, is generally set to produce nine inch maximum lumps for 36 inch belts. For first-cost and other reasons, this belt width appears to be very common for section and feeder applications, and for the denser-than-coal ores found in the hard rock industry, a maximum product size in the range of 6-8 inches is appropriate, it is interesting to note that even for very large oil shale installations (very wide belts) a six inch product is recommended.

It appears that there is relatively little need to simultaneously develop a range of machinery between these small units and the large central primaries now being used. Ultimately a range of intermediate sizes will be desirable, of course, but this can easily be developed from low head room equipment meeting the above specifications.

As will be illustrated in the following section, these requirements cannot be met by existing hard rock crushing equipment. In fact, noting that the desired dimensions include whatever overhead clearance is needed to load the crusher proper, and space underneath to deliver its product (assuming a typical vertical jaw or gyratory design), it is obvious that standard machines are far from satisfactory. It follows, then, that satisfactory new concepts cannot be found among minor variations of standard concepts: the sought after design will differ substantially from present designs. At the same time, it would be comforting if a new concept did not depart substantially from the basic comminution means of proven designs. Economical crushing of hard rock, day in and day out, through many millions of tons, is, after all, a rather difficult task, even without severe space limitations, and proven means should not be so quickly discarded.

The inventors task is not quite so formidable as the proceeding may suggest. In comparison to a typical aggregate production application for example, some aspects of the portable application actually ease the design problems: The crusher is needed only for oversize (unbeltable) material. Thus, while the crusher should avoid fines, it has no rigid product size requirement other than maximum size, and essentially no product shape requirement (a requirement that justifies some rather subtle variations of crusher geometry in many conventional applications). Furthermore, if the crusher is designed to pass undersize material freely, or if its feed mechanism provides scalping to bypass smaller material, much of the throughput will be free, a provision which will also reduce the production of fines, and, more importantly, dust.

Many manufacturers were contacted in an extensive effort to include all available equipment and manufacturing capability in this study. Appendix A is a list containing the names and (if available) addresses of those manufacturers who were contacted. Although not all were responsive, many were quite helpful and the majority expresses the opinion that they would need the results of this study if the industry or any single manufacturer were to consider the development of portable, underground, hardrock crushers.

This study was neither intended, nor will it attempt, to instruct the reader in the complete art of primary rock crushing. There are many good references in this area; notable among these is McGrew. Our goal is to define the optimum parameters for the design of a portable, underground, hard rock crusher in order to insure that future development will lead to maximum utilization by the industry.

In summary then, we want to study present crusher types with an eye toward moving them around in hard-rock mines. Though small, these units will handle essentially as mined or ROM material, and should rightfully be called primary crushers.

This class of crusher historically has been used on the strongest ores. Crushing is accomplished by relatively slow moving members exerting very high force levels. Understandably, these crushers are typically very big, very strong, and heavy.

Figure 1 shows a simplified section of a typical gravity fed gyratory crusher. Clearly the typical portable underground crusher requirements presented in Section 2 cannot be met by a standard gyratory. However, because the crushing action of the gyratory works well on hard rock, the portable crusher designer should be aware of the favorable features exhibited by this important member of the primary field:

Single and double toggle jaw crushers differ in the motion characteristics of the moving jaw, which results in somewhat different operating characteristics. Jaw action in the Blake (double toggle) type is a simple pivoting motion about a stationary bearing near the receiving opening. Displacement is thus a maximum at the discharge, tapering to zero at the pivot.

Because of its simplicity, the overhead eccentric (single toggle type) exhibits lighter weight, much lower cost, and a greater potential for portability, although it is not significantly shorter thanthe Blake (double toggle type). Due to the pronounced vertical components of motion from the overhead eccentric, it elliptical wiping motion provides good feeding action, and hence capacity. The price for this action is, of course, accelerated wear of the jaw plates in addition to increased shock loading on the eccentric and shaft bearings caused by the large jaw motion relative to Blake type machines at the receiving opening. Consequently, Blake types, with their low scrubbing motion and great leverage on larger feed, tend to be favoured for highly abrasive or very hard, tough rock.

The basic overhead eccentric jaw motion has been built in a vertical double-eccentric version (both jaws moving in unison), with the intention of providing more capacity for a given feed opening and longer jaw life due to reduced scrubbing provided by lower relative jaw velocity. The Eimco Division of Knvirotech, and the Westfalia Company of Germany, have tipped this arrangement on edge (eccentrics vertical), thereby changing the feed direction from vertical to horizontal and greatly reducing machine height.

Little is known about the German machines, as none are in use in North America and none are believed to be handling predominately hard rock. Eimco, on the other hand, has built two prototypes which have been tested in medium and hard rock in low headroom conditions. The Eimco crusher, shown in Figure 4, utilizes a feeder-breaker style chain flite conveyor which pulls material from the bottom of the surge pile and stuffs it into the jaw region. Discharge occurs immediately after the choke region of the jaws, onto a customer supplied conveying means. The chain conveyor obviously must pass beneath the active region between the jaws, severely diminishing or eliminating its feeding ability, particularly during the crushing stroke. To achieve better feeding in the crushing zone, Eimco has modified the common overhead eccentric toggle geometry so that both jaws close every where at the same time, with the crushing stroke strongly oriented in the feed direction. These measures enable a second generation machine to achieve throughputs approaching (perhaps 80%) the capacity of a vertical, single overhead eccentric crusher of comparable inlet dimensions. The Eimco inlet is approximately 40 x 40 inches.

Both prototypes were tested at White Pine Copper in White Pine, Michigan. Problems were encountered and changes were made, as with most prototypes, but large blocks of 20-28,000 psi sandstone were successfully handled on a regular basis. Since Dial time, mining

at White Pine has been concentrated in medium strength shale, where the horizontal jaw is not sufficiently perfected to be competitive with heavy duty feeder-breakers, about which more is presented in subsequent sections. Very strong ores have not been tried on a significant scale in the horizontal jaw.

Though low in profile, this crusher design utilizes a feed means that tends to orient slabby material horizontally, hence the wide, square jaw opening. Slabs that do get fed on edge can be passed untouched through the jaws, a common problem with vertically fed jaw crushers as well. Dimensionally, horizontal jaw crushers are quite acceptable, though they could use elevating discharge means to reduce site excavation requirements, and with more development in hard rock applications, this concept may become an economical alternative candidate for the subject application.

True impact crushers for primary crushing are limited to hammer types. They are included here only because there may be a specialized situation justifying their unique characteristics. Figure 5 shows a section of a typical hammermill; Figure 6 shows an Impactor.

Impact type crushers are high reduction machines (up to 40:1 vs. 8:1 for a jaw). In part because of this, they produce a considerably finer product than is necessary to achieve mechanized underground haulage. Very large feed, as is common with ROM material, is not easily handled by the hammer mill because of its impact principle of operation. Crushing is accomplished by the high velocity impact (5000 fpm) between the hammers (and liners) and individual pieces of rock in the feed, with the only means of support of rock fragments being the inertia of the rock itself. Under these conditions the rock fragments should not only be less massive than the hammer, but also quite friable. Abrasive feeds cannot be economically handled by hammermills or by impactors.

Impactors, as Figure 6 indicates, are better suited to large feeds than is the hammermill. This type uses fewer and stouter hammers, but, like the hammermill, relies on the inertia of the feed to hold the rock while it is chipped away. Primary crushing, even of non-abrasive and friable material, and particularly underground, is better handled by other machines unless very special conditions exist. An admittedly unlikely example of a situation in which an impact type crusher could be successfully employed as a portable underground primary crusher might be described by thefollowing conditions:

(a) abnormally small ROM material suitable for impactor feed but too big to be conveyed. (b) very friable, non-abrasive feed, material. (c) fine product allows less expensive form of mechanized haulage and eliminates the need for secondary crushing equipment.

Roll crushers is a term sometimes used to describe the combination (impact & pressure) class of crushers. Sledging roll crushers is a more suitable name, since it is distinguishing from the impact and pressure terminology and, in fact, the rotor in a roll crusher is frequently called a sledging roll. Sledging roll crushers are characterized by a medium velocity impact (500 fpm or less) between a rotor protrusion and the feed material while the feed is supported in the crusher, hence the term sledging.

The term roll is used in a wide variety of non-sledging equipment types and needs clarification here. Crushing rolls, two-roll feed-pinching machines, are really a high speed continuous pressure class of crusher used for secondary and tertiary crushing. Sometimes they are confusingly called two-roll crushers, or double roll crushers, or four-roll crushers. The roll surfaces are usually smooth or nearly so and impact or even sledging does not play a significant part in the comminution process. Roll crusher may also be used to describe a high speed machine in which the feed is neither supported by the crusher nor nipped by the roll protrusions. As described in the previous section, this is a high reduction pure impact class crusher sometimes used to avoid secondary crushing.

Sledging roll crushers may be of the single- or double-roll type, the latter being distinguishable from smooth pressure class crushing rolls by the characteristic protrusions (sledges) which work on the feed material. Double-roll sledging crushers usually employ more impact and less sledging by virtue of higher tip speeds, and are principally used for secondary crushing. Figure 7 shows a typical single-roll sledging crusher. There are several features of this type of crusher worthy of mention.

The feeder-breaker is an adaptation of the single roll-sledging crusher developed specifically for portability and use in low headroom coal mines. Since it has found successful use in a number of non-coal mines it is therefore worthy of mention. Figure 8 shows a typical feeder breaker.

To achieve low profile, this specialized machine passes material horizontally under the roll, or breaker shaft as it is usually called. The anvil (or bed in this configuration) is flat, and feed is accomplished by a chain-flite conveyor which pulls feed from under the pile of material in the attached surge hopper, and, after passing through the breaking zone, continues on to feed at a relatively controlled rate over the conveyor head pulley, hence the name feeder-breaker. Another characteristic of this single-roll sledging crusher is the shape of the breaker teeth, or picks, as they are generally called. They are relatively few in number (particularly for weak material), replaceable, and pointed, generally being carbide tipped.

Feeder breakers have greatly advanced the practice of conveyorized haulage in coal mines, and during recent years beefed-up versions, pioneered by the W. R. Stamler Corporation, have been successfully employed in a variety of non-coal mines. Among these are underground salt, potash, trona, iron, copper mines, and some open pit mines. These mines use a wide variety of primary short haulage means, but they all make use of low labor, high capacity conveyor systems made possible by the feeder-breaker.

When applied to stronger and/or more abrasive ores, feeder breaker crushing costs naturally escalate to levels well above those of conventional hard rock (i. e., jaw) crushers. In fact it appears that feeder-breakers are used, in some applications, solely because of their low headroom characteristics, and despite crushing costs from 3 to 5 times what could be expected of a jaw crusher in the same material. However, sufficient savings are achieved elsewhere in the haulage system, so that feeder-breakers are the economic choice in one copper mine where the ore is routinely between 12-20,000 psi compressive strength, and also abrasive. That mine also uses feeder-breakers in sandstone sections where ore strength runs to 28,000 psi. Maintenance and rebuild costs are higher in such areas, and this is considered by many to be about the hard rock limit of feeder breakers as a class of crusher.

A narrow version of the feeder-breaker has been developed by a German company for use on longwall systems. Various sledge configurations (not sharp picks) are used, and the unit is generally incorporated in a chain-flite bridge conveyor between the longwall system and a headgate conveyor. Two such units are in use on longwalls in U.S. trona mines (7000 psi max.), which accounts in part for their mention here. The concept (sizing of longwall discharge) is worth noting, in view of U.S. research efforts to apply new technology and longwall methods to hard rock mines.

There are many other comminution processes that one could bring to mind. Among these would be all the primary and secondary breakage methods, grinding and milling methods, thermomechanical, and even ballistic and nuclear concepts. These are not considered here because there are no presently available machines using these processes. Other comminution methods in general will be considered in the concepts section (Section 9) after the problem statement has been fully developed and conclusions drawn.

Having discussed the various classes and types of hard rock primary crushers, we can examine their potential for meeting the general requirements previewed in Section 2. Those requirements call for a crusher of low height, large feed opening, and modest throughput. Since multiple small crushers will be less efficient to operate and more costly to purchase than one central crusher, we must also consider cost as a factor in suitability.

The one mining parameter that is least controllable in a given mine and has the greatest influence on crusher selection is size of feed. Although drift dimensions obviously cannot be specified by the crusher designer, machine height, to some extent, is in his hands. Accordingly, machine height, throughput, and cost will be examined with respect to the common parameter, feed opening. Since feed opening implies a two dimensional passageway for material, the smaller or Critical Input Dimension (CID) will be used where appropriate. The implication is that most any crusher can (and should) be fed so as to avoid direct attack of the largest dimension of the feed material. Also implied, but perhaps less obvious, is the desire and intention to feed material so as to attack the smallest dimension of the feed, not the middle dimension.

Figure 9 presents representative manufacturers throughput data as a function of CID for 3 classes of crushers totalling six different types. Capacities have been normalized on medium limestone and minus 6 inch product in most cases. Gyratories are clearly high capacity machines at any feed size, and they tend to he applied to very large material. The Blake type jaw crushers are considerably lower in capacity, reflecting to some extent their application to very hard and abrasive feeds. Also noticeable is the range of capacities available for a given CID, a favorable feature afforded by variable jaw or rotor width. The tremendous forces encountered in crushing very large feed tend to leave the stronger Blake as the only jaw type in this region.

Getting down into the throughputs of most concern (400 tph and less), both Blake and overhead eccentric types appear, with the edge in capacity going to the overhead eccentrics. Also appearing are the horizontal jaw crushers and the sledging class, both single roll and feeder-breaker types. Maximum feed size for a given CID will be somewhat less in the case of horizontal jaws because the feed mechanism for this type tends to cause attack of the middle, rather than the smallest dimension of the feed material.

Figure 10 is a plot of bare machine height as a function of CIB for the same six types of crushers. Keeping in mind that bare height is exclusive of any foundations if required) or feeding and discharge means, all conventional gyratory and vertical jaw types are clearly beyond our need for 7-9 foot installed height at 30-36 inch CID. Nor can these standard machines be significantly shortened, as an examination of earlier figures will reveal.

We are left, at present, with horizontal jaws and the sledging class of crusher. But sledging roll crushers and to a lesser extent, feeder breakers, reach their economic limit at medium strength ore, characterized by (among other things) compressive strengths

in the 12-20,000 psi range and, even then, only under specialized conditions. The horizontal jaw crusher would appear to be the lone contestant, but it is relatively new and little can be learned about its economic performance at this time. Westfalia, a German manufacturer of longwall and other mining equipment, developed the concept, and, although machines are in use in Europe, no information is available regarding hard or very strong ore applications, and none are in service in North America. Eimco Division of Envirotech is the U.S. pioneer of horizontal jaw crushers, having built two generations of machines. These machines were technically successful in crushing a regular diet of stronger ore (20-28,000 psi) but could not compete economically in the medium strength range against the then highly developed heavy duty feeder-breakers, a statement which most certainly would apply to weaker ores as well. Dimensionally, the horizontal jaw is virtually identical to the successful feeder-breaker (Eimco data is plotted) and with further experience this basic concept may prove to he one answer to low profile hard-rock crushing.

Figure 11 shows the bare cost (no drives, hoppers, feeders, etc. ) of the various crushers under discussion. Some of the data are approximations, but the plot is useful in several respects. It shows, for instance, that something must be sacrificed to get low profile. In the case of horizontal jaws, increased initial cost is the penalty. Feeder-breakers, the low profile member of the sledging class, cannot economically handle the stronger ores. To work on the very hard or abrasive ores, machine height aside, requires that one choose the more expensive Blake type vertical jaw instead of the lighter overhead eccentric. Gyratories having the required CID again are inherently much too much machine for this application.

Using the larger Blake type or gyratories as an example (they dominate as centralized crushers in hard-rock mines) we can get an idea of the capital investment against which a multiplicity of portable crushers must inevitably be judged. Suppose a 7000 tpd mine would need a 4860 Blake type jaw crushing 500 tph of minus 6 inch product. Such a crusher would cost perhaps $350,000 including significant installation costs. An equivalent portable crusher system might involve five machines, four of which would be in service, with each capable of 250 tph. The greater total crushing capacity of the portable system is necessitated by its need to keep moving up, and by its vulnerability to downstream haulage interruptions. If these five portables cost in the vicinity of $200,000

each (a reasonable assumption for hard rock), the capital investment for portables becomes one million dollars versus $350,000 for a fixed installation. In addition, since the operating and maintenance costs of the two crusher systems are likely to be in about the same ratio, it is clear that the portable system must achieve great savings in other categories. These would likely include primary and secondary haulage costs (capital and labor) find productivity.

The primary use of a portable crusher, i.e., a crusher mounted on crawlers or tires, in the rock and mining industries is to reduce costs by permitting the substitution of conveyor belt haulage for truck or track haulage. The usual sequence of operations in surface mining is drilling, blasting, loading, haulage, and crushing. Haulage is normally accomplished by truck or track-mounted cars, the latter method being used for the longer distances.

In addition to potential cost savings in haulage procedures, a portable crusher would allow better utilization and performance of shovels. Loading operations would not be interrupted as often by the necessity of waiting for cars or trucks. Unfortunately, the application of belts in open pits for haulage from bench sites is generally not practical under existing conditions because a belt fed directly by a mechanical shovel can be torn, damaged, or worn out quickly by the large rock fragments falling on it during loading.

As previously noted, the use of a portable crusher would increase the performance of a loading shovel and thereby decrease the number of shovels required to maintain the same rate of production. However, there are quarries where rock must be taken from different parts of the pit and mixed together in order to get a desirable composition. This is usually done in cement quarries. For such cases, storage of material at the end of the stationary conveyor or along its route is suggested, where the desirable mixture of product could be achieved.

Quarries or open pits using track haulage often require a large number of workers to move the track after blasting as well as to operate the railroad switches. The use of a long-boom shovel would make it possible to increase the distance between the bench face and the track. It would also aid in reducing the amount of time now consumed in moving the track and the number of workers to do the job, but such a shovel is more expensive and slower.

Application of the portable crusher might encourage the use of higher benches with the commensurate less blasting that would be required. Domestic practice, however, does not favor the use of high bench faces, partly for safety reasons during loading and partly because higher benches usually require a large borehole diam, larger drill, etc. Inclined drilling might solve such blasting problems because it reduces the resistance of the rock to blasting at the toe of the bench.

Related News
  1. iron ore crushing tender
  2. gold mining pany in the philippines
  3. energy saving drying machine for mineral ore
  4. gold refinery equipment supplier
  5. new type jaw crusher for galena for sale with iso&ce
  6. mineral processing equipment turkey in south africa
  7. south african mining equipment suppliers mining equipment manufacturers
  8. quartz mining quarry
  9. fuel consumption of mining equipment
  10. pre independence german gold mining in kenya
  11. briquetting plant lady
  12. shaking 2014 jeep compass
  13. rotary dryer design pdf
  14. enugu efficient environmental iron ore linear vibrating screen for sale
  15. bangladesh rod mill cost
  16. mini iron ore cutting equipment iron ore testing machine
  17. used impact crusher for sale uk
  18. rod mill conveyors design
  19. briquette machine in nigeria
  20. mineral processing production line is that