Hello, my partner! Let's explore the mining machine together!

[email protected]

wet drum magnetic separator for iron ore iron sand view

magnetic filter, magnetic separator products from china manufacturers - longi magnet co., ltd. - page 1

magnetic filter, magnetic separator products from china manufacturers - longi magnet co., ltd. - page 1

Dry Drum Separator, Magentic Bar manufacturer / supplier in China, offering Wet High Intensity Magnetic Separator Purification of Ceramic, Wet High Intensity Magnetic Separator Purification of Quartz, Wet High Intensity Magnetic Separator for Quartz and so on.

wet magnetic drum separator

wet magnetic drum separator

Low-intensity separators are used to treat ferromagnetic materials and some highly paramagnetic minerals.Minerals with ferromagnetic properties have high susceptibility at low applied field strengths and can therefore be concentrated in low intensity (<~0.3T) magnetic separators. For low-intensity drum separators used in the iron ore industry, the standard field, for a separator with ferrite-based magnets, is 0.12 T at a distance of 50 mm from the drum surface. Work has also shown that such separators have maximum field strengths on the drum surface of less than 0.3 T. The principal ferromagnetic mineral concentrated in mineral processing is magnetite (Fe3O4). although hematite (Fe2O3) and siderite Fe2CO3 can be roasted to produce magnetite and hence give good separation in low-intensity machines.

Permanent magnetic drum separators combine the attributes of a high-strength permanent magnetic field and a self-cleaning feature. These separators are effective in treating process streams containing a high percentage of magnetics and can produce a clean magnetic or non-magnetic product. The magnetic drum separator consists of a stationary, shaft-mounted magnetic circuit completely enclosed by a rotating drum. The magnetic circuit is typically comprised of several magnetic poles that span an arc of 120 degrees. When material is introduced to the revolving drum shell (concurrent at the 12 oclock position), the non-magnetic material discharges in a natural trajectory. The magnetic material is attracted to the drum shell by the magnetic circuit and is rotated out of the non-magnetic particle stream. The magnetic material discharges from the drum shell when it is rotated out of the magnetic field.

Permanent magnetic drum separators have undergone significant technological advancements in recent years. The magnetic circuit may consist of one of several designs depending on the application. Circuit design variations include:

The standard magnetic drum configuration consists of series of axial poles configured with an alternating polarity. This type of drum is simple in design and can be effective for low-intensity applications such as the recovery of ferrous metals and magnetite. This configuration typically does not provide a sufficient field strength or gradient for the recovery of paramagnetic minerals at high capacities. A typical axial circuit is shown in Figure 3.

The high-gradient element, as the name implies, is designed to produce a very high field gradient and subsequently a high attractive force. Several identical agitating magnetic poles comprise the element. The poles are placed together minimizing the intervening air gap to produce the high surface gradient. Due to the high gradient, the attractive force is strongest closer to the drum making it most effective when utilized with a relatively low material burden depth on the drum surface and, thus, a lower unit capacity. A high-gradient magnetic circuit is shown in Figure 4.

The interpole-style element utilizes a true bucking magnetic pole or interpole between each main pole. The magnetic field of the bucking element is configured to oppose both of the adjacent main poles resulting in a greater projection of the magnetic field. As a result, the interpole circuit allows for a relatively high material burden depth on the drum surface and thus higher unit capacity or improved separation efficiency. An interpole magnetic circuit configuration is shown in Figure 5.

A second interpole configuration consists of steel pole pieces placed between the magnetic poles. This is commonly termed a salient-pole element. The steel interpoles concentrate the magnetic flux providing a very high magnetic gradient at the drum surface. The magnetic field configuration is similar to the high- gradient type element but with an intensified surface gradient. This configuration offers the strongest field projection of any of the previously described circuits. The salient-pole circuit design is shown in Figure 6.

The magnetic elements described above are axial elements. The magnetic poles run across the width of the drum and are of alternating polarity. Magnetic elements are typically assembled with a minimum of five magnetic poles that span an arc of 110 degrees. (For all practical purposes, an arc of only 80 degrees is required to impart a separation. Non-magnetic particles usually leave the drum surface with a natural trajectory at a point of 60 to 70 degrees from top dead center dependent on the drum speed, particle size, and specific gravity.) The poles have alternating polarity to provide agitation to the magnetic components as they are transferred out of the stream of the non-magnetics. A magnetic particle will tend to rotate 180 degrees as it moves across each pole. This agitation is functional in releasing physically entrapped non-magnetics from the bed of magnetics. Agitating magnetic drums are most effective in collecting fine particles or where the feed contains a high magnetics content.

Dense-medium circuits have been installed in many mineral treatment plants since its original development about thirty years ago. In the intervening period the process has been thoroughly evaluated and many innovations have been introduced. The Heavy Density Cyclone is one of the newer systems which has extended the operating range of this process to 65 mesh size.

Medium recovery is obviously important since any loss is a direct cost against production. In coarse coal dense-medium plants a loss of 1 pound of magnetite per ton is usually acceptable but reduction to pound per ton as has been obtained in some plants.

Efficient cleaning maintains fluidity in the bath and increases sharpness of the coal-waste separation. Most dense-medium systems will tolerate some non-magnetic dilution of the bath but the magnetic separator must be capable of keeping this within workable limits, particularly on difficult coals. In some plants a partial bleed of the operating dense-medium bath is maintained through the magnetic separator to keep it clean.

Operating gravities of dense-medium coal plants are usually low enough so that a straight magnetite bath can be used. The return of a magnetic separator concentrate having 50% or more solids will maintain gravity without need for a thickening device. The use of a drum wiper has permitted the return of a 70% solids concentrate back to the separatory vessel. Operation at a high solids concentrate discharge is recommended since medium cleaning is improved. The colloidal slimes carried over with water are more completely rejected at high solids discharge.

Several types of magnetic separators have been used in magnetic medium recovery.The first magnetic drum separators were electro magnetic types but the development of efficient wet permanent drum separators has resulted in nearly universal acceptance of permanent drums in new plants.

The basic construction of each drum is the same. It consists of a stationary magnet assembly held in a fixed operating position by clamp bearings mounted on the separator support frame. An outer rotating cylinder driven through a sprocket bolted to one of the drum heads carries the magnetic material to the magnetic discharge point.

Normally, extreme cleanliness of the magnetic concentrate is not of prime importance in dense-medium plants but this can be a factor in some coals that separate with difficulty. The concurrent tank, reduced separator loading and in some instances dilution of the feed pulp will improve magnetic cleaning. Recleaning of a primary concentrate would improve cleaning but has not been used in commercial plants.

wet high intensity magnetic separator, dry drum magnetic separator, magnetic separator suppliers - longi magnet co., ltd

wet high intensity magnetic separator, dry drum magnetic separator, magnetic separator suppliers - longi magnet co., ltd

Thailand has plenty of river sand resource which is high quality of silica sand, upto 99.6% SiO2. In the northest, the river sand had been proved that the high iron contaimination Fe2O3 upto 0.165% can be lowered down to 0.065% by high gradient magnetic separation technology.

Recycling aluminum refers to the scrap aluminum as the main raw material to obtain aluminum alloy after pretreatment, smelting, refining, and ingot casting. Aluminum has features of strong corrosion resistance, low loss during use, and will not lose its basic characteristics after repeated recycling for many times, and has extremely high recycling value.

Wet magnetic separation is widely used in the purification of quartz sand, which has the characteristics of significant iron removal effect, large handling capacity and no dust pollution. In the primary stage of quartz sand purification, wet magnetic separation is generally considered to be an excellent way of iron removal purification, but in the stage of high-purity quartz cleaning, the conventional wet magnetic separation purification effect is not obvious, the reasons can be summarized as three points.

LONGi magentic separator bring hot sales, recently,RCBD flame-proof electromagnetic separator in addition with excellent iron removel performance, excellent heat dissipation efficiency and perfect service guarantee ability successfully won the bid for the domestic leading coal enterprises, a total of 39 sets, lay a good foundation for the market follow-up development.

more separator, solid waste recycling line products from china manufacturers - fushun ejet magnetic equipment co., ltd. - page 1

more separator, solid waste recycling line products from china manufacturers - fushun ejet magnetic equipment co., ltd. - page 1

Eddy Current Separator, Cross Belt Magnetic Separator, Magnetic Drum Separator manufacturer / supplier in China, offering Eddy Current Separators for Removing Contaminants From Crushed Polyethylene Terephthalate (PET) Beverage PVC Containers, Ultra High-Frequency UHF Eddy Current Separator to Recovers Non-Ferrous Fines and Bare Aluminum Copper Wire, Metal Separation and Sorting to Processing Burning Household Waste Mswi Bottom Ash From Incinerators and so on.

china magnetic separator manufacturer, air classifier, metal locator supplier - weifang guote mining equipment co., ltd

china magnetic separator manufacturer, air classifier, metal locator supplier - weifang guote mining equipment co., ltd

Magnetic Separator, Air Classifier, Metal Locator manufacturer / supplier in China, offering Non-Polluting Quartz Silica Sand Making Machine, Horizontal Silica Sand Processing Machine for Sale, Electromagnetic Dry Powder Magnetic Separator and so on.

Weifang Guote Mining Equipment Co., Ltd. is located in weifang city, shandong province qingzhou economic development zone, covers an area of 50000 square meters, registered capital of 63.38 million yuan, is a high-tech enterprises in shandong province, the company has passed ISO9001 quality system certification, the environment system certification, safety management system certification, the European Union CE certification, more than a dozen countries useful invention patents. Has been awarded as the ...

lims magnetic separators - metso outotec

lims magnetic separators - metso outotec

Metso Lims separators are designed around the revolving magnetic drum with an internally stationary magnetic array. Theyare available in several types for vast number of duties and could be seen as split into two categories, dry separation and wet separation.

The wet versions are designed for material of a few micrometer size to less than around 6 - 8 millimeters suspended in water. For both separator types a number of magnetic systems are available for highest possible efficiency of each application.

magnetic separation

magnetic separation

Including wet high intensity, induced roll, rare earth roll, rare earth drum, low intensity and medium intensity magnetic separators the Reading range has a magnetic solution to fit your particular processing requirements.

The WHIMS range includes 4, 16, 24 and 48 pole machines with either 68 or 120 millimetre separation matrix widths. WHIMS separators are suitable for applications requiring higher magnetic field gradients to remove weakly magnetic particles from non-magnetic concentrates. Nominal capacities range from 6 to 150 tonnes per hour.

Reading induced roll and semi-lift induced roll magnetic separators are available with 2 starts, single or twin-pass configurations in 133 millimetre roll diameter and 760 millimetre roll width or 160 millimetre roll diameter and 1000 millimetre roll width, and deliver nominal capacities of up to 12 tonnes per hour. Pilot roll laboratory scale separators are available in both induced roll and semi-lift induced roll configurations.. Typical applications include:

The rare earth magnetic separator range achieves the most effective dry separation of paramagnetic minerals at high throughput rates. The range includes Rare Earth Roll (RERS) and Rare Earth Drum (REDS) Separators which are available in a range of configurations and sizes from lab units to full production units.

Related News
  1. alloymagnets com magnetic filter magnetic separator
  2. manganese carbonate magnetic separation
  3. wet magnetic separator for iron ore
  4. wet magnetic separator in algeria
  5. magnetic separation column
  6. electrostatic gold separator
  7. high quality hydro cyclone classifier separation machine for non ferrous minerals
  8. spiral chute separator adalah
  9. magnetic 0png
  10. what is the core meaning of magnetic separation
  11. flotation cell cfd
  12. indian gold prospecting equipment manufacturers
  13. second hand jaw crushers price in west bengal
  14. harper tangible benefits new construction waste ore processing line
  15. high frequency screen klean
  16. mobile crusher wiki
  17. aswan efficient portable dolomite mineral processing production line manufacturer
  18. high quality bentonite stone crushing machine for sale in rome
  19. sikkim screw classifier price
  20. powder grinding mill valley film festival