Hello, my partner! Let's explore the mining machine together!

[email protected]

what are some practical applicants of magnetic separators

magnetic separation method

magnetic separation method

Magnetic separation is a process used to separate materials from those that are less or nonmagnetic. All materials have a response when placed in a magnetic field, although with most, the effect is too slight to be detected. The few materials that are strongly affected (magnetised) by magnetic fields are known as Ferromagnetics, those lesser (though noticeably) affected are known as Paramagnetics.

Ferromagnetics require relatively weak magnetic fields to be attracted and devices to separate these materials usually have magnets that are permanently magnetised (Permanent magnets do not require electricity to maintain their magnetic fields). Paramagnetics require stronger magnetic fields and these can only be achieved and maintained by electro magnets (large wire coils around an iron frame current is continuously passed through the coils creating the magnetic field within the iron. The field is concentrated across an air gap in the circuit).

Both ferromagnetic (low intensity) and paramagnetic (high intensity) separation devices (Laboratory Magnetic Separator) may be operated with dry solids or with solids in pulp form. (A complete classification of magnetic separating devices is given in Wills Mineral Processing Technology, pp. 338-356).

(*The units given are kilogauss (kG). These are the units most commonly used. The equivalent S.I. unit is the Tesla (T) * 1 Tesla = 10 kilogauss). The extremes of field strength used are based on experience from a magnetic separation testing laboratory over many years.

iron ore magnetic separation

iron ore magnetic separation

In the West, capitalists have expended many millions of dollars developing the low-grade porphyry ores of copper. Half a dozen of these great enterprises have proved to be wonderful commercial successes. They have demanded improved crushing and concentrating machinery and consequently it has been developed. Many improved methods, cheap power, superior business organization, all these have contributed to this success, but the main feature is the handling of the material in enormous quantities, on a manufacturing scale. The mining chance of striking it rich has been eliminated by the manufacturing certainty of handling large quantities of material of known value, which while of relatively low grade, is available in large tonnages, assuring a supply for many years run of the mill. Then the returns on the money invested are sure.

The concentration of low-grade magnetic iron ores, separating the magnetite crystals from the gangue by the use of magnets, is a field of work in which the lessons taught by the development of the porphyry coppers can be studied to advantage. Large-scale operations, and the liberal expenditure of enough money at the start to insure the most economical operations, are the means of securing the desired results.

The problem is to utilize millions of tons, and we may safely say billions of tons, of now worthless iron-bearing rock and to produce from it 10,000,000 to 20,000,000 tons per year of high-grade ore carrying 60 per cent, iron or higher; to take the lean material as found in nature, varying widely in iron content, and bring it up to a uniform standard of shipping ore. At present these ores are mined carrying from 25 to 50 per cent, iron, and the shipping product is brought up to 60 or 65 per cent. Fe. If future economies of operation make it possible to extend this process so that 15 per cent, iron in the crude ore can be treated as a commercial success, the additional tonnage available will be enormous. A 15 per cent. Fe crude ore raised to 60 per cent. Fe concentrate with 5 per cent.

Fe loss in tailings would require 5.5 tons of crude for 1 ton of concentrates. The cost of crushing and concentration can be brought down to 12 c. per ton crude or possibly to 10 c., and the cost of quarrying on a large scale, probably 40 c., would be low enough to leave a profit even now. There are mountains of gabbro rock in the Adirondacks that will average 15 per cent, iron in the form of magnetite crystals of good size, say 1/8 to 1/16 in., but the concentrate would also carry some titanium.

A thorough examination of some of the iron-ore properties and the knowledge acquired by development of extensive underground workings makes it possible to make quite definite estimates of tonnage available in certain areas, which show very large reserves.

F. S. Witherbee in his paper read before the American Iron and Steel Institute last October gave an estimate of 1,100,000,000 tons of crude magnetic ore above 30 per cent. Fe available for concentration in the Adirondack region alone, not including any titaniferous ores except the one deposit at Lake Sanford. He practically confined his estimate to the area of the iron-bearing gneisses which surround the central core of later eruptives, the anorthosites and gabbros, in which the titaniferous ores are found.

There are also in New Jersey and southeastern New York large areas that give conclusive evidence of vast amounts of non-titaniferous magnetites. The map accompanying the report of the State Geologist of New Jersey, year 1910, shows the area of iron-bearing gneiss rocks running northeast and southwest across the State about 18 miles wide by 50 miles long, from Phillipsburgh to Greenwood Lake. In this area are located by name 366 magnetite mines that have been worked more or less. There are also 24 limonite and 8 hematite mines. These lenses may easily be capable of producing an average of 1,000,000 tons each and there are probably double the number listed not opened up. Here we have 900 sq. miles of iron-bearing gneisses in New Jersey, or more than in the Adirondack region, with nearly as much more additional in southeastern New York, reaching from the New Jersey line across the Hudson at Fort Montgomery and extending to Brewsters.

Mr. Witherbees method of computation estimated 20 ft. thickness of ore over 10 per cent, of the surface area. He afterward cut the estimate, in half to be conservative, which was equivalent to 10 ft. thickness of ore on one-tenth of the surface. This would give 2,700,000 tons per square mile or on 900 sq. miles in New Jersey 2,300,000,000 tons, with a goodly area in New York to-fall back on to make up deficiencies.

Magnetic ore is found quite widely distributed, in Canada, Minnesota, California; New Mexico, New York. New Jersey, Pennsylvania, North and South Carolina, Tennessee. A detailed study of these deposits might be an interesting subject for the Bureau of Mines to follow up.

Some time in the, year 1887 my attention was called to the magnetic separation of ores. At that time Edison was experimenting with his deflecting magnet and the Wenstrom, a Swedish machine of the drum type, was in use. The Conkling machine, which was also on the market, was the forerunner of the modern belt machine, but the magnetic attraction came from a single magnetized plate.

My first experiment was with Port Henry old-bed ore, which I crushed to pass through 1/8 in. mesh, and then ran through an old-fashioned fanning-mill, such as are used on farms. I had better results than those obtained by Mr. Edison with his deflecting magnet. I then made a trial of the Conkling idea but found that the magnetic plate picked up a large part of the gangue with the ore, so that the ore had to be sized and fed very slowly to get good results. The same trouble was experienced with the Wenstrom machine.

I then made a small machine, substituting common horseshoe magnets , for the magnetic plate of the Conkling machine. Since the magnets were of north and south polarity the ore turned end for end in moving from one pole to the nextnot only the loops of ore and gangue but each individual piece turning. In this way the gangue was allowed to drop out, the ore was held, passed on to the next magnet, and so finally cleaned of the non-magnetic rock.

However, as I was not an electrical engineer, I went to a friend, Clinton M. Ball, explained the operation of the machine, and told him that if he would make electromagnets of sufficient size and power, of alternating poles, I thought they would be a great improvement over anything previously used. Mr. Ball made the magnets, a small machine was built (shown in Fig. 2), and taken to the Benson mines, where about

The small machine was of the belt type. Mr. Ball soon after designed a drum-type machine, and later a double-drum machine in which a three-part separation was made. There are now magnetic machines of many types, but the majority use the alternating pole magnets.

Mr. Palmers machine is an interesting example of an early crude use of an important scientific principle. It was simple and primitive in the extreme, consisting primarily, of a row of horseshoe magnets spiked around a log, like the spokes of a wheel. Finely crushed crude ore was allowed to slide through a wooden trough underneath the magnets, which were rotated by a crank attached to their supporting log. As the magnets rotated, they dipped into the trough, the good ore became attached to them and was lifted up. It was then transferred to another trough, set above, by employing the simple device of a broom wielded by a husky Irishman.

The number of so-called magnetic separators for which patents have been taken out has been so large that it would be a waste of time even to try to enumerate, them. Many of them were mere toys and a number were mechanical monstrosities. The belt and drum machines of the Ball and Norton patent have accounted for 90 per cent, of magnetic concentration by the dry process; while the wet magnetic process has been entirely monopolized in this country by the Grondal-type machine. There are no patents today controlling magnetic separation, and there is no longer any chance for any now or startling discoveries in this line.

The first magnetic separator that I constructed was of the belt type. It was operated with a feed belt running 125 ft. per minute, while the take-off belt ran 250 ft. per minute. I wished to make a careful test of the capabilities of the machine when working on an ideal material, so I prepared a special mixture for the purpose. This consisted of crushed white marble, washed and sized between 1/8 and 1/20-in. mesh; mixed with iron ore of the same size in a proportion of 2 parts marble to 1 part iron. It was evident that the particles of iron ore and marble would not be attached to each other, since the, mixture was purely artificial. This mixture was then fed to the machine in a stream in. deep. The separation was almost perfect, giving an iron product over 99 per cent. pure. In this way, the possibility of a complete separation was conclusively demonstrated. In actual practice, however, such thorough preparation of material is impossible, and, owing to the difficulty of properly preparing the ore, there are some cases where separation cannot be made a commercial success.

The magnetic iron ores found in different localities vary widely, not only in their iron content, but also in their physical structure. The ores from the various districts require, consequently, radically different treatment.

In the first place, bodies of ore differ widely in crystallography. For example, the ores of the Champlain Valley are more coarsely crystalline than the ores of New Jersey, the Benson mine, or the Cornwall ore bed. Obviously the mill treatment of these ores cannot be the same. Among other things, ore containing the coarser crystals would not require to be crushed to so fine a size as ore of the Cornwall type. It is very important to find the exact size at which any particular ore is most economically separated, and this size can easily be determined by experimental tests in a suitable laboratory. Moreover, the degree of fineness to which the ore must be crushed determines the process of separation to be employed. An ore which must be crushed to 1/8 in., 1/16 in., or lower will require the wet method of separation, while for larger sizes the dry method can be most profitably employed. The exact size that determines the method to be used is also somewhat dependent on the amount of moisture contained. Quite fine sizes can be separated if perfectly dry and fed in a thin film, but the dust problem is then somewhat difficult to deal with.

The largest development in the iron-ore industry, using magnetic concentration, is at the plants of Witherbee, Sherman & Co. at Mineville, N. Y., where about 1,200,000 tons of crude ore were mined and separated in 1916. The dry process of separation is used. The Chateangay; Ore & Iron Co., at Lyon Mountain, N. Y., the Empire Steel &

Iron Co. and the Ringwood Co. in New Jersey, also use the dry process successfully. The Grondal wet separators have been recently installed at the Benson mines in New York. The largest development of the, wet process in this country is on the Cornwall ore at Lebanon, Pa. This work is in charge of B. E. McKechnie, who is the highest authority on the wet process.

In the practical application of magnetic separation the most vital part is the preparation of the ore. It must be crushed so that the crystals of magnetite, or groups of crystals, are sufficiently freed from rock to bring the percentage of iron up to the standard set for shipping ore. On the other hand, it must not be crushed too fine, if it is possible to avoid it, otherwise the blast does not pass through readily in the furnace, or the ore blows over the top.

If the material going to the separators is sized, the strength of the magnets, can be adjusted to pick up the ore of more nearly uniform quality, but a separation can be made without very close sizing.

The pulley-type machine (Fig. 4) has a full circle of magnets which revolve with the drum. The magnets are wound to carry more-current than the-drum machine and will attract any lean ore, throwing off pure rock or tailings.

The drum and pulley machineswill handle 30 to 50 tons per hour and are used together. The drum picks out any ore, as heads, rich enough for shipment. The pulley throws out rock lean enough to discard; what is left as middlings is crushed to about half its size and passed to machines treating finer sizes.

The belt-type machine (Fig. 5) is used when the ore is reduced to -in. or below. The magnets are open to the air, so keep comparatively cool and are easily inspected. Since the magnets of the belt machine lift the ore from the feed belt, the gangue is less likely to be held in suspension and a cleaner concentrate is insured. In the triple-deck machine shown in Fig. 5 the two top machines make heads and the bottom one makes tailings, and middlings to be reground.

If fine grinding is necessary to separate the crystals of magnetite from the gangue, wet separation is indicated. In this case treatment by sintering, or other processes, to agglomerate the ore is also required. The sintering process solves another difficulty by removing sulphur. Low iron and high sulphur content are handicaps which can now be both overcome by the combination of magnetic concentration and sintering.

The accompanying flow sheets of mill No. 3 (Fig. 6), mill No. 4 (Fig. 7), and mill No. 5 (Fig. 8), of Witherbee, Sherman & Co. at Mineville, N. Y., show arrangements for treating, three different ores. The richness of the ore determines at what size the first separation can be made.

The ore must be very dry in order to secure freedom of motion between the particles, or poor separation will result. This condition allows the very fine particles to escape as dust. No system of fans or other arrangements for eliminating or controlling this dust has been developed which can be successfully operated at a cost not prohibitive on this ore.

Owing to the tendency of the fine particles of talcy gangue to cling to the magnetic pieces, it was found impossible to raise the iron constant above 52 per cent, when separating the average grade of Cornwall ore. This fact is demonstrated by washing concentrates from the dry magnetic separation, when the iron content was easily raised from 52 to 58 per cent. This suggested using a combined process of dry magnetic separation and of washing the magnetic product in some such apparatus as the Dorr classifier.

The same or better results could probably be obtained by a wet magnetic separation. This process would eliminate the cost of drying, the dust problem and should give a higher recovery of iron, due to the fact that a certain amount of iron would be lost in the slime from washing of dry concentrates. In the wet magnetic separation this washing is carried out in a strong magnetic field, which greatly reduces the loss from this cause.

In connection with the results obtained from the experimental wet magnetic separator constructed for investigating the wet process of magnetic separation of Cornwall ore, attention is called to the following points:

It is evident that in the separation of any ore by magnetic or other forces, the ore must be crushed sufficiently fine to free the valuable minerals from the gangue, and also that the degree of fineness required in the crushing depends upon the physical characteristics of the ore. As it is impractical to carry the crushing far enough to free all the mineral from the gangue, there will be a certain percentage of attached particles or middlings consisting of both mineral and gangue.

In the case of magnetic separation, these attached particles may go either as concentrates or tailings, depending on the strength of the magnetic field and the ratio by weight of magnetic to non-magnetic material in each. From this it follows that the stronger the magnetic field, the lower in iron will be both the concentrates and tailings product, due to a larger quantity of attached particles being attracted to the magnets. The reverse also holds true, that, the lower the current, the higher in iron will be both the concentrates and tailings as fewer attached particles will go to the concentrates and more to the tailings.

The richer the crude ore, the higher will be the grade of concentrates and the higher will be the iron content in the tailings. This is due to the fact that the rich ore carries a greater proportion of rich particles and a smaller proportion of rock. The grade of concentrates is raised, due to the smaller percentage of attached particles, while the percentage of iron in the tailings is greater, because of the smaller amount of clean rock present to balance the small quantity of magnetic material entering the tailings.

Assuming that the amount of magnetic particles dropped by the separator is a nearly constant quantity, a higher percentage of recovery of iron is obtainable from a rich ore than from a leaner ore as the percentage of iron lost is evidently less.

The wet magnetic separator constructed for these experiments is a drum-type machine, constructed on the Ball-Norton principle. It consists of a number of stationary electromagnets, of alternate positive and negative polarity attached radially to a central shaft. About these magnets revolves a non-magnetic, water-tight drum, which carries a thin rubber belt.

In practice the magnets do not extend the entire circumference of the machine, but a gap is left between the points of feeding and delivery of concentrates. In this machine which was built for experimental work, any desired number of magnets could be cut out by short-circuiting the current around them.

Arrangement 1.The revolving drum drives the thin rubber belt which covers the face of the drum and passes over pulleys. Ore and water, or pulp, are fed by a launder or feed sole in such a manner that the feed is thrown against the moving belt. The magnetic particles are held to the drum, while the non-magnetic material falls into the tank and is drawn off. As the magnetic material held against the belt passes through the water, the influence of the alternating polarity of the magnets is to cause the magnetic particles to take a rolling action, which allows any entrapped gangue to fall out. As the drum further revolves, the magnetic concentrates are lifted out of the water and carried up the belt and around the pulley, where they are washed off by a spray of water.

In practice on Cornwall ore, it was found that a certain amount of very fine gangue was carried by the water into concentrates. They were, therefore, led to a classifier consisting of an inverted pyramid or tank, the bottom of which was fitted with a small hole and a connection above this hole for supplying clean water under slightly greater head than the depth of water in the tank. This water supply was regulated to furnish all the water required to supply the hole or the spigot and to furnish a slight raising current against which the heavy magnetic particles would fall but the very fine gangue could not, but would escape over the edge with surplus water.

Arrangement 2 was similar to 1 except that the water level in the tank was lowered until it was below the drum. This was done in an effort to reduce the amount of dirty water carried over the concentrates. The separator failed to make a separation operated in this manner, due to the fact that the surface tension of the water on the drum caused this water to act as a blanket, which did not allow the non-magnetic material to fall out.

In arrangements 3 and 4, the motion of the drum was reversed and the idler pulley removed. The feed sole was placed above to feed the pulp in the direction of travel of the belt. The tailings were to be removed at the tank and the concentrates, carried past the division board placed under the last magnet were to be removed by the spray of water. Due to the surface tension of the water, no separation took place above the water level. The separation accomplished beyond this point was destroyed by currents set up in the water by the rotation of the drum.

It should be noted that 9 per cent, represents non-magnetic iron, or that about 75 per cent, of the iron occurring in this tailings sample is non-magnetic and cannot be charged to the inefficiency of the separation.

Crude..38.30 per cent, total Fe, 33.64 per cent. Fe as magnetite. Concentrates..58.40 per cent, total Fe, 55.97 per cent. Fe as magnetite. Tails10.20 per cent, total Fe, 2.17 per cent. Fe as magnetite.

The following reports show results of samples tested to determine treatment required and quality of concentrates that could be expected. These tests were run on a regular mill size separator and the results could be duplicated in actual practice. The separate determinations of iron as magnetite, and total iron, were made so that the difference between the two would show the amount of iron combined as silicates in hornblende and other gangue minerals.

307 lb. crude ore was crushed to pass 1/8-in. screen; separated, by screening, into two sizes, on 16 and through 16-mesh. Through 8 on 16-mesh 132 lb., through 16, 175 lb. 8-16 size, treated on belt machine using 3, 4, 5 amp. and finally with 4 amp. for heads. Then 12 amp. for midds and tails.

Crude 224 lbFe Heads 115.Fe 66.15, P 0.005 Tails 108.Fe 3.00 General crude 307 lb.Fe 30.85 P 0.008 General cone. 135Fe 65.60, P 0.005 General tails 171..Fe 3.27

Note.Owing to the iron being present in very small crystals it is necessary to crush this ore to at least 1/8-in before separation, but since the ore is extremely brittle this is easily accomplished with little power.

Note.In order to reduce the iron in the tailings finer grinding through 16-mesh will be necessary at the last stage making a three-part separation on the through 16 size and retreating resulting midds.

The demonstration of the dry process of magnetic separation is the result of 14 years work at Mineville, N. Y. Witherbee, Sherman & Co. have now in operation three mills having a combined capacity of 6,000 tons per day of crude ore. The Empire Steel & Iron Co. and the Ringwood Co. have demonstrated what can be done with New Jersey ores. The Ringwood Co. has also worked out a dry process of jigging for their tailings to recover the martite, which is non-magnetic. Martite is a hematite in composition, but is very similar in appearance and crystallization to the magnetite. Some of the magnetic ores have varying amounts of martite mixed with the magnetite.

The known and partially developed orebodies of New York and New Jersey could, if equipped with the best modern mining and milling machinery and using the best methods, produce at the present time 25,000 tons of 60 per cent, iron ore per day. This can be delivered for an average freight charge of $0.75 per ton from mill to tidewater. The operating cost of production should reach the dollar rock ideal of the Lake Superior Copper region, and the cost of mining and milling 1 ton of crude ore should be about $1 for underground mining when handled in large quantities.

The ratio of concentration would be 2 tons of crude per ton of concentrates for an average. There are reserves of magnetic ore sufficient to double the above production, and then last probably 100 years.

applications of magnetic molecularly imprinted polymers (mmips) in the separation and purification fields | springerlink

applications of magnetic molecularly imprinted polymers (mmips) in the separation and purification fields | springerlink

Magnetic molecularly imprinted polymers (MMIPs) have attracted considerable attention in recent years as multifunctional materials suitable for use in the separation and purification fields. When modified with a specific functional polymer, MMIPs can be used to extract chemicals from a matrix and concentrate them based on specific recognition features, enabling more convenient retrieval of analytes using an external magnetic field. This review covers the preparation, characterization, and applications of various MMIPs, with particular focus on the technique used to coat such MMIPs with functional groups. A comprehensive overview of the applications of MMIPs to electrochemistry, food, and environmental analysis, and medicine is also presented. Furthermore, the problems and trends associated with MMIP-based applications are discussed.

Li, G., Row, K.H. Applications of Magnetic Molecularly Imprinted Polymers (MMIPs) in the Separation and Purification Fields. Chromatographia 81, 7388 (2018). https://doi.org/10.1007/s10337-017-3407-y

application of magnetic beads in bioassays | nature biotechnology

application of magnetic beads in bioassays | nature biotechnology

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

This review outlines the possibilities of magnetic separation techniques and the application of magnetic beads in bioassays. By linking monoclonal antibodies or DNA to magnetic beads, or by using magnetic beads coated with streptavidin, a specific interaction with the corresponding target is ensured. By means of an external magnet, the recovery of material for further studies is greatly simplified. Magnetic beads have proven valuable in cell separations, for example, removal of tumor cells from bone marrow and isolation of lymphoid cells from peripheral blood, and for the isolation, identification and genetic analysis of specific nucleic acid sequences (DNA or RNA) and for isolation of DNA binding proteins. In addition, some of these techniques have also proven to be useful in the detection of specific nucleic acids from viruses or bacteria.

Forrest, G.C. and Landon, J.R. 1978. Fully automated continuous-flow radioimmunoassay system employing magnetisable particles, p. 567594. In: Automated immuno-analysis, vol. 2 (R. F. Richie) (Ed.) Dekker, New York.

Margel, S., Zisblatt, S. and Rembaum, A. 1979. Polyglutaraldehyde: A newreagent for coupling proteins to microspheres and for labelling cell surfacereceptors. II. Simplified labelling method by means of non-magnetic and magnetic polyglutaraldehyde microspheres. J. Immunol. Meth. 28: 341353.

Ugelstad, J., Mrk, P.C., Kaggerud, K.H., Ellingsen, T. and Berge, A. 1980. Swelling of oiigomer-polymer particles. New methods of preparation of emulsion and polymer dispersions. Adv. Colloid Interface Sci. 13: 101140.

Ugelstad, J., Kaggerud, K.H., Hansen, F.K. and Berge, A. 1979. Absorptionof low molecular weigth compounds in aqueous dispersions of polymer-oligo-mer particles. A two step swelling process of polymer particles giving anenormous increase in absorption capacity. Macromolec. Chem. 180: 737744.

Pellegrino, M.A., Ferrone, S. and Theophilopoulos, A.N. 1976. Isolation ofhuman T and B lymphocytes by rosette formation with 2-aminoethylisothiouro-nium bromide (AET)-treated sheep red blood cells and with monky red bloodcells. J. Immunol. Methods 11: 273279.

Vartdal, F., Gaudernack, G., Funderud, S., Bratlie, A., Lea, T., Ugelstad, J. and Thorsby, E. 1986. HLA class I and II typing using cells positively selectedfrom blood by immunomagnetic isolationa fast and reliable technique. Tissue Antigens 28: 301312.

Funderud, S., Nustad, K., Lea, T., Vartdal, P., Gaudernack, G., Stenstad, P. and Ugelstad, J. 1987. Fractionation of lymphocytes by immunomagnetic beads, p. 5565. In: Lymphocytes: A Practical Approach. G. G. B. Klaus (Ed.). IRL Press Ltd, Oxford, UK.

Lea, T., Vartdal, F., Nustad, K., Funderud, S., Berge, A., Ellingsen, T.R., Stenstad, P. and Ugelstad, J. 1988. Monosized, magnetic polymerparticles: Their use in separation of cell and subcellular components, and in thestudy of lymphocyte function in vitro. J. Mol. Recognition, 1: 913.

Treleaven, J.G., Gibson, F.M., Ugelstad, J., Rembaum, A., Philips, T., Caine, D. and Kemshead, J.T. 1984. Removal of neuroblastoma cells from bonemarrow with monoclonal antibodies conjugated to magnetic microspheres. Lancet 14: 7073.

Kemshead, J.T., Treleaven, J.G., Gibson, F., Ugelstad, J., Rembaum, A. and Philip, T. 1985. Monoclonal antibodies and magnetic microspheres used for the depletion of malignant cells from bone marrow, p. 413423. In: Advances in Neuroblastoma Research Vol. 175. EvansA. E., D'Angio, J. and Seeger, R. C. (Eds.). A. R. Liss lnc., NY.

Kvalheim, G., Fodstad, ., Pihl, A., Nustad, K., Pharo, A., Ugelstad, J. and Funderud, S. 1987. Elimination of B-lymphoma cells from human bone marrow:Model experiments using monodisperse magnetic particles coated with primarymonoclonal antibodies. Cancer Res. 47: 846851.

Bast, R.C., DeFabritiis, P., Lipton, J., Gelber, R., Maver, C., Nadler, L., Sallan, S. and Ritz, J. 1985. Elimination of malignant clonogenic cells from human bone marrow using multiple monoclonal antibodies and complement. Cancer Res. 45: 499503.

Platsoucas, C.D., Chae, F.H., Kernan, N. et al. 1987. The use of magneticmonosized polymer particles for the removal of T cells from bone marrow cellsuspensions, p. 366. In: Microspheres: Medical and Biological Applications. A. Rembaum (Ed.). CRC Press, Boca Raton, PL.

Vartdal, F., Kvalheim, G., Lea, T., Bosnes, V., Gaudernack, G., Ugelstad, J. and Albrechtsen, D. 1987. Depletion of T-lymphocytes from human bone marrow. Use of magnetic monosized polymer microspheres coated with T-lympho-cyte-specific monoclonal antibodies. Transplantion 43: 366371.

Johansen, L., Nustad, K., Berg rstavik, T., Ugelstad, J., Berge, A., and Ellingsen, T. 1983. Excess Ab immunoassay for rat glandular kallikrein. Mono-sized polymer particles as the prefered solid phase material. J. Immunological Methods. 59: 255264.

Albretsen, C., Kalland, K.-H., Haukanes, B.-L., Hvarstein, L.-S. and Kleppe, K. 1990. Applications of magnetic beads with covalently attached oligonucleotidesin hybridization: Isolation and detection of specific measles virus mRNA from acrude cell lysate. Anal. Biochem. 18: 4050.

Lund, V., Schmid, R., Rickwood, D. and Homes, E. 1988. Assessment ofmethods for covalent binding of nucleic acids to magnetic beads, Dynabeads,and the characteristics of the bound nucleic acids in hybridization reactions. Nucl. Acids Res. 16: 1086110880.

Gabrielsen, O.S., Homes, E., Korsnes, L., Ruet, A. and Oyen, B. 1989. Magnetic DNA affinity purification of yeast transcription factor (tau)a newpurification principle for the ultrarapid isolation of near homogenous factor. Nucl. Acids Res. 17: 62536267.

10 examples of magnetic force in everyday life studiousguy

10 examples of magnetic force in everyday life studiousguy

You must have noticed magnets at one point of time in your life. But do you know that these magnets play crucial roles in our daily lives? Well, in this article, well discuss some everyday examples of magnets and the magnetic force produced by them. Before moving ahead, lets have some basics about the magnetic force.

The magnetic force is a part of the electromagnetic force, one of the four fundamental forces of nature, and is caused by the motion of charges. There will be a magnetic attraction force between two objects containing charge with the same direction of motion, whereas, objects with charge moving in opposite directions have a repulsive force between them. It can also be defined as the attractive or repulsive form of energy that exists between the poles of a magnet and electrically charged moving particles. These moving charges create magnetic fields, and the interacting magnetic fields give rise to magnetic force.

Diamagnetism- Diamagnetic materials have no unpaired electrons. Almost every material possess diamagnetism and these materials have the tendency to oppose an applied magnetic field, and therefore, these are repelled by a magnetic field. Examples- Copper, Silver, Gold, Air, Water, etc.

Paramagnetism Paramagnetic materials have unpaired electrons. As an unpaired electron is free to align its magnetic moment in any direction; in the presence of an external magnetic field, these magnetic moments tend to align themselves in the same direction as the applied field, thus, reinforcing it. Examples- Aluminium, Manganese, Platinum, Lithium, Oxygen, etc.

Ferromagnetism Like paramagnetic materials, these also have unpaired electrons. Ferromagnetic materials are strongly magnetized in an external magnetic field and retain their magnetic property even after the removal of the external magnetic field. Examples- Iron, Nickel, Cobalt, etc.

Lets consider two objects. The magnitude of the magnetic force between them depends on the amount of charge and motion present in each of the two objects and how far apart they are. The direction of the force depends on the directions of motion of the charge.

Here; B is the magnetic field, v is velocity, F is the force that is perpendicular to the direction of the magnetic field B, and q is the charge. Fis perpendicular to the plane that contains bothvandB.

A compass is a tool for finding direction. It has a magnetic needle mounted on a pivot or short pin. The needle can spin freely, and always points north. Have you ever been on a hiking or camping trip? If you did, then, at some point you must have used a compass to help find your way; because a compass always points North. But have you ever wondered why is it so? Well, its all caused by the power of magnetism!

Magnetic resonance imaging (MRI) is one of the most common medical imaging techniques used at many diagnostic centers across the world. These MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body.

Ever wondered how Hand-held hair dryers, electric knives, electric razors, hair, and beard trimmers work? Its all with the help of Magnetic force. An electric motor converts electrical energy into physical movement. Electric motors generate magnetic fields with electric current through a coil. The magnetic field then causes a magnetic force with a magnet that causes movement or spinning that runs the motor.

Ever wondered how a speaker works? In order to convert an electrical signal into an audible sound, speakers contain an electromagnet (a metal coil that creates a magnetic field when an electric current flows through it). This means that it is, in turn, attracted to and repelled from the permanent magnet, vibrating back and forth.

Have you wondered how the refrigerator functions? How the refrigerator door remains closed? the weak ferromagnetic ceramics like barium ferrite or strontium ferrite present in the fridge magnet aligns the spins of unpaired electrons in metal atoms in the fridge in such a way that the magnet and the fridge door are attracted to each other; this force keeping the doors closed.

Well, data are stored in hard disk drives on the basis of magnetism. Theres a coating of magnetic material on the disc; consisting of billions or even trillions of tiny magnets. With the use of an electromagnetic head, data is stored in the disc.

Microwave ovens also work with the help of the magnetic force. They use a device called a magnetron to generate the power for cooking. A magnetron is a vacuum tube designed to cause electrons to circulate in a loop inside the tube. A magnet is placed around the tube to provide the magnetic force that causes the electrons to move in a loop.

We see cars everywhere around us, but have you ever wondered what makes it move from one point to another? It is due to Magnetic force. Cars use electromagnetic properties produced inside the engine to create movement, while with fossil fuel engines, the energy is obtained by the ignition. By turning the magnetic coil attached to an axle, the wheels of the car also turn and the car moves.

Maglev is a system of train transportation that uses two sets of magnets, one set to repel and push the train up off the track, and another set to move the elevated train ahead, taking advantage of the lack of friction. The next you travel by train, youll be amazed to be traveling on huge magnets.

The magnets in the rotor of the fan are repelled by those in the stator. As they manage to repel themselves away to the maximum permitted by the movement of the rotor, the electrical circuit switches one of the sets of magnets over, so that those in the rotor and stator find themselves repelling each other again. By doing this repeatedly at each cycle of the rotor, the rotor is kept constantly on the move. All this is done by the power of Magnetic force.

Related News
  1. magnetic separator collant
  2. carpco gravity separator
  3. spiral chutes for chrome ore separation 13 min min for sale
  4. new potash feldspar spiral chute separator in leon
  5. almaty high end medium basalt spiral chute separator sell at a loss
  6. us patent 4 795 553 spiral separator patents com
  7. high quality hydro cyclone classifier separation machine for non ferrous minerals
  8. spiral chute separator adalah
  9. magnetic 0png
  10. what is the core meaning of magnetic separation
  11. vibro separator and filter gyro screening machine for charcoal
  12. roller smokeless ball briquette charcoal aluminium press briquetting machine philippines
  13. sand kingdom moons
  14. hot sell multi-function jaw crusher and roll crusher integrated sample preparation system for coal and ore
  15. sandvik jaw crusher for sale
  16. chevy rock crusher 4 speed
  17. jual double roll crusher penghancur batu untuk dijual di
  18. large chrome ore wear parts of ball mill in bandung
  19. impact juice bar orange
  20. how crusher works stone crusher working principle crushing plants working